11 avril 2024

Webinaire Hassan M. Nagib

Hassan M. Nagib est titulaire de la chaire John T. Rettaliata d'ingénierie mécanique et aérospatiale à l'Illinois Institute of Technology, et a été le directeur fondateur du centre de recherche sur la dynamique des fluides de l'institut. Il est spécialisé dans la mécanique des fluides, les écoulements turbulents et la gestion et le contrôle des écoulements. À l'Illinois Tech, il a été président du département MMAE, doyen de l'Armour College, vice-président académique et scientifique en chef de l'IIT Research Institute (IITRI). H. Nagib a reçu plusieurs distinctions prestigieuses, dont celle de membre de la Société Américaine de Physique, de l'Association Américaine pour l'avancement des Sciences, de l'Institut Américain d'Aéronautique et d'Astronautique et de la Société Américaine des Ingénieurs en Mécanique. Depuis son institut pendant plus d'un demi-siècle, il a été professeur invité à plusieurs reprises à l'université de Stanford, au California Institute of Technology, au KTH Royal Institute of Technology, à l'École polytechnique fédérale de Lausanne, à l'université Friedrich-Alexander d'Erlangen, et a été Tewkesbury Fellow au département d'ingénierie mécanique de l'université de Melbourne. Traduit avec DeepL.com (version gratuite) Hassan M. Nagib is the John T. Rettaliata Endowed Professor of Mechanical and Aerospace Engineering at the Illinois Institute of Technology, and was the founding director of the institute’s Fluid Dynamics Research Center. His field of specialty is in fluid mechanics, turbulent flow, and flow management and control. At Illinois Tech, he served as MMAE department Chair, dean of Armour College, academic vice president, and chief scientist for IIT Research Institute (IITRI). Nagib is the recipient of several prestigious honors including being a Fellow of the American Physical Society, the American Association of Advancement of Science, the American Institute of Aeronautics and Astronautics, and the American Society of Mechanical Engineers. From his base institute for more than half a century, he has been a visiting faculty on several occasions at Stanford University, California Institute of Technology, KTH Royal Institute of Technology, École Polytechnique Fédérale de Lausanne, Friedrich-Alexander University, Erlangen, and a Tewkesbury Fellow in the Department of Mechanical Engineering at University of Melbourne.
Wall-Bounded Turbulence: Recent Lessons from Experiments-Asymptotics-Computation

Utilizing the three-pronged approach of experimental measurements, computational results (DNS), and matched asymptotic analysis (MAE), we have reexamined the three canonical wall-bounded turbulent flows of pipe, channel, and pressure gradient boundary layers (FPG, ZPG and APG). Detailed and systematic study confirmed the non-universality of the Kármán constant (κ) reported in 2008 by Nagib, H. M. and Chauhan, K. A. in Variations of Von Kármán Coefficient in Canonical Flows, Phys. Fluids 20, 101518. Recently, a new matching approach also revealed an inner-outer overlap consisting of a superposition of log-law and a linear term, as detailed in a paper by Monkewitz, P. A. and Nagib, H. M., The Hunt for the Kármán “Constant” Revisited, J. Fluid Mechanics, Vol. 967, A15, 2023. A similar linear term was suggested by Afzal and Yajnik, J. Fluid Mech. (1973 and 1970), Lee and Moser (2015), J. Fluid Mech, 774, pp. 395-414, and Luchini (2017) Phys. Rev. Lett. 118, 224501. In our results, we find that the coefficients of both terms are dependent on the pressure gradient of the flow. A new and robust method is devised to simultaneously determine the coefficients of the log and linear terms, and the constant term in pressure driven flows at currently accessible Reynolds numbers, and yields κ values that are consistent with the κ values deduced from the Reynolds number dependence of centerline velocities. After many decades of experience with “canonical” wall-bounded turbulent flows, we recognize fully developed pipe flow as the ideal flow to compare computations and experiments. With collaborators at several universities, we have conducted experiments, with Re_τ up to 33,000, and DNS for pipe flow at Re_τ = 550 and 1,000, with several resolutions, and extended Eddy Turnover Times (ETT) of up to 200. New criteria for resolution and an existing criterion for convergence of DNS are being developed and confirmed, respectively. We find that higher resolution DNS and longer computational times are required for wall-bounded turbulence, compared to values commonly used. Finally, the impact of the new combined log-law and linear term on textbooks, lecture notes, RANS codes, and turbulence models will be highlighted.

11 avril 2024, 16h3017h30
Webinaire (veuillez contacter F. Romano pour obtenir le lien)

Prochains évènements

Voir l'agenda
04 juillet 2024

HDR Francesco Romano

Stability, mixing and asymptotic modeling in flows with well-separated characteristic length scales

12 juillet 2024

Soutenance Thèse Thomas HURET

Génération en soufflerie d'écoulements cisaillés turbulents représentatifs des écoulements environnementaux de couches limites atmosphériques par des dispositifs passifs