05 October 2023

Webinaire Marco Edoardo Rosti

Marco Edoardo Rosti est Assitant Professor à l'Institut des sciences et technologies d'Okinawa (OIST), au Japon, depuis 2020. Il a obtenu un master en ingénierie aéronautique au Politecnico di Milano en 2013, et un doctorat en ingénierie aéronautique à City, University of London en 2016. Avant de rejoindre l'OIST, il a passé du temps en tant que chercheur postdoctoral à l'Institut royal de technologie KTH, en Suède, et à l'Université de Tokyo, au Japon. Les recherches de Marco Rosti portent sur la turbulence multiphase et les fluides complexes. Il a reçu le prix RYUMON du jeune chercheur distingué en mécanique des fluides, décerné par la Société japonaise de mécanique des fluides en 2021, et il est rédacteur en chef adjoint de l'European Journal of Mechanics/B et rédacteur en chef de Results in Engineering.
Polymeric turbulence

Turbulent flows containing modest amounts of long-chained polymers have remained an intriguing area of research since the discovery of turbulent drag reduction. Here, we perform direct numerical simulations of statistically stationary, homogeneous, and isotropic turbulent flows of dilute solutions of polymers at various Reynolds and Deborah numbers.
At large Reynolds number, we present evidence that there is a range of scales r over which the energy spectra and the structure functions show new scaling consistent with recent experimental results. In particular, we find that for small wavenumbers k, the kinetic energy spectrum shows Kolmogorov–like behavior which crosses over at a larger k to a novel, elastic scaling regime, E(k)~k^(−ξ), with ξ≈2.3. We uncover the mechanism of the elastic scaling by studying the contribution of the polymers to the flux of kinetic energy through scales, and show that this elastic behaviour is non-monotonic in the Deborah number.
At low Reynolds number, our simulations show that elastic turbulence, though a low Reynolds number phenomenon, has more in common with classical, Newtonian turbulence than previously thought. In particular, we find power-law spectra for kinetic energy E(k)∼k^(−4), independent of the Deborah number. In real space, as expected, the velocity field is smooth, but, crucially, with a non-trivial sub-leading contribution. Interestingly, the results show clear evidence of intermittency and multifractality.

05 October 2023, 13h3014h30
Visio-conférence (veuillez contacter F. Romano pour obtenir le lien)