24 mars 2022

Wébinaire Laurette Tuckerman

Laurette Tuckerman a fréquenté l'université Wesleyan et l'université de Princeton et a obtenu un doctorat en mathématiques appliquées au Massachusetts Institute of Technology en 1984. Elle a travaillé au Centre de recherche nucléaire de Saclay (CEA) en France, puis à l'université du Texas à Austin, où elle a été postdoc au Center for Nonlinear Dynamics, puis membre de la faculté du département de mathématiques. En 1994, elle est devenue chercheuse au Centre National de la Recherche Scientifique (CNRS) en France. Elle a également enseigné à l'École polytechnique et à l'École normale supérieure (Paris). Elle est actuellement directrice de recherche pour le CNRS, au Laboratoire de Physique et Mécanique des Milieux Hétérogènes de l'ESPCI Paris, travaillant dans les domaines de l'instabilité hydrodynamique, de la théorie des bifurcations et de la dynamique des fluides computationnelle.
Exotic patterns of Faraday waves

Abstract: A standing wave pattern appears on the free surface of a fluid layer when it is subjected to vertical oscillation of sufficiently high amplitude. Like Taylor-Couette flow (TC) and Rayleigh-Benard convection (RB), the Faraday instability is one of the archetypical pattern-forming systems. Unlike TC and RB, the wavelength is controlled by the forcing frequency rather than by the fluid depth, making it easy to destabilize multiple wavelengths everywhere simultaneously. Starting in the 1990s, experimental realizations using this technique produced fascinating phenomena such as quasipatterns and superlattices which in turn led to new mathematical theories of pattern formation. Another difference is that the Faraday instability has been the subject of surprisingly little numerical study, lagging behind TC and RB by several decades. The first 3D simulation reproduced hexagonal standing waves, which were succeeded by long-time recurrent alternation between quasi-hexagonal and beaded striped patterns, interconnected by spatio-temporal symmetries. In a large domain, a supersquare is observed in which diagonal subsquares are synchronized. A liquid drop subjected to an oscillatory radial force comprises a spherical version of the Faraday instability. Simulations show Platonic solids alternating with their duals while drifting.

24 mars 2022, 16h3017h30
Webinaire: veuillez contacter F. Romano ou J.-P. Laval pour obtenir le lien

Prochains évènements

Voir l'agenda
08 décembre 2022

Webinaire Fabian Denner

Fabian Denner a obtenu son doctorat à l'Imperial College de Londres en 2013 sur les méthodes numériques pour les écoulements multiphasiques avec tension de surface, suivi d'un post-doc à l'Imperial College. En 2015, Fabian a obtenu une bourse prestigieuse

Fabian Denner a obtenu son doctorat à l'Imperial College de Londres en 2013 sur les méthodes numériques pour les écoulements multiphasiques avec tension de surface, suivi d'un post-doc à l'Imperial College. En 2015, Fabian a obtenu une bourse prestigieuse du Conseil de recherche en ingénierie et en sciences physiques (EPSRC) du Royaume-Uni, avec laquelle il a poursuivi ses travaux fructueux sur les écoulements avec tension de surface et a étendu ses recherches à de nouveaux domaines, tels que les écoulements compressibles et chargés de tensioactifs. Depuis 2018, Fabian est professeur junior de modélisation des écoulements multiphasiques à l'Otto-von-Guericke-Université de Magdebourg (Allemagne). Ses recherches tournent autour du développement de méthodes numériques et d'outils logiciels pour prédire les écoulements multiphasiques, et de l'application de ces méthodes pour répondre aux questions liées à la physique et aux applications de ces écoulements. Actuellement, les travaux de Fabian se concentrent sur les écoulements interfaciaux avec des surfactants, les écoulements viscoélastiques, les écoulements multiphasiques dans les applications biomédicales, ainsi que sur la cavitation et l'acoustique.