18 février 2021

Wébinaire Alexander Smits

Alexander J. Smits est membre de la National Academy of Engineering, membre de l'American Academy of Arts & Sciences, membre honoraire de la Royal Aeronautical Society, membre de l'American Physical Society (APS), de l'American Institute for Aeronautics and Astronautics (AIAA), l'American Society of Mechanical Engineers (ASME), l'Australasian Fluid Mechanics Society et l'American Association for the Advancement of Science. Il est l'auteur (avec J.P. Dussauge) de «Turbulent Shear Layers in Compressible Flow», Springer-Verlag (2e édition, 2005), auteur de «A Physical Introduction to Fluid Mechanics», John Wiley & Sons. (2000) et rédacteur (avec T.T. Lim) de «Flow Visualization: Techniques and Examples», Imperial College Press (2e édition, 2011), ainsi que l'auteur ou le co-auteur de plus de 450 articles de revues et articles en conférence procédure. Il détient des brevets sur le test de l'aérodynamique des balles de golf et sur l'utilisation de lasers femtosecondes en chirurgie oculaire et en détatouage. Il a reçu le "IUT AM Batchelor Prize in Fluid Mechanics" (2020), le APS Fluid Dynamics Prize (2019), le AIAA Aerodynamic Measurement Technology Award (2014), un doctorat honorifique en ingénierie de l'Université de Melbourne en Australie (2011), le Médaille de la Ville de Marseille (2009), l'ASME Fluids Engineering Award (2007), le AIAA Pendray Aerospace Literature Award (2007), le President's Award for Distinguished Teaching from Princeton University (2007) et le AIAA Fluid Dynamics Award (2004) ). Il a été président de la Division de la dynamique des fluides de l'APS (2007-2008) et rédacteur en chef du Journal AIAA (2015-2021).
Fast and efficient underwater propulsion inspired by biology

Abstract: Biology offers a rich source of inspiration for the design of novel propulsors with the potential to overcome and surpass the performance of traditional propulsors for the next generation of underwater vehicles. To- date, however, we have not achieved the deeper understanding of the biological systems required to engineer propulsors with the high speed and efficiency of animals like sailfish, tuna, or dolphins. What is the underlying physics of the fluid-structure interaction of bio-propulsors that results in the superior performance observed in nature? Moreover, how do we replicate this performance in the next generation of man-made propulsors? Can we push beyond the limits of biology? By studying the performance of simple heaving and pitching foils, we have identified the basic scaling that describes the thrust, power and efficiency, under continuous as well as burst-coast actuation. These scaling relationships allow us to identify the natural limits on simple bio-inspired propulsors, and suggest that further improvements in performance will require adaptive flexibility and optimized profiles.

18 février 2021, 16h3017h30
Wébinaire (contacter F. Romano pour le lien)