31 mars 2022

Wébinaire Alexander Oron

Après son doctorat à Technion en 1987, Alexander Orion est parti à Caltech (USA) pour un premier post-doc (1987-1988) suivi d'un second post-doc au "Center for Nonlinear Studies", Los Alamos National Laboratory (USA). Depuis 1990, il est Professeur au département d'ingénierie mécanique du Technion (Israël). Alexander Orion est membre du comité de rédaction de Acta Mechanica et membre du comité consultatif pour les séries de conférences: IMA (International Marangoni Association) et BIFD (Bifurcations and Instabilities in Fluid Dynamics). Ses recherches portent sur les instabilités hydrodynamiques, les instabilités des films liquides minces, les équations d'évolution non linéaires, la mécanique des fluides dans les environnements de faible gravité et de microgravité, les problèmes de frontières libres en hydrodynamique ou les simulations numériques de phénomènes non linéaires en hydrodynamique.
Buoyancy instability in a liquid layer subjected to an oblique temperature gradient

Abstract: We investigate the temporal and spatiotemporal buoyancy instabilities in a horizontal liquid layer supported by a poorly conducting substrate and subjected to an imposed oblique temperature gradient (OTG) with the horizontal and vertical components, denoted as HTG and VTG, respectively. The general linear stability analysis (GLSA) reveals a strong stabilizing effect of the HTG on the instabilities introduced by the VTG for Prandtl numbers Pr >1 via inducing an extra vertical temperature gradient opposing the VTG through the energy convection. For Pr <1, a new mode of instability arises as a result of a velocity "jump" in the liquid layer caused by cellular circulation. A long-wave weakly nonlinear evolution equation governing the spatiotemporal dynamics of the temperature perturbations is derived. The spatiotemporal stability analysis reveals the existence of the convectively unstable long-wave regime due to the presence of the HTG. The weakly nonlinear stability analysis reveals the supercritical type of bifurcation changing from pitchfork in the presence of a pure VTG to the Hopf bifurcation in the presence of the OTG. Numerical investigation of the spatiotemporal dynamics of the layer in the weakly nonlinear regime reveals the emergence of traveling-wave regimes propagating in the direction of the HTG and whose phase speed depends on Pr. In the case of a small but nonzero Biot number, the wavelength of these traveling waves is larger than that of the fastest growing mode obtained from the GLSA.

31 mars 2022, 16h3017h30
Webinaire: veuillez contacter F. Romano ou J.-P Laval pour obtenir le lien

Prochains évènements

Voir l'agenda
25 avril 2024

Wébinaire Johan Meyer

Simulation and modelling of wind-farm blockage and wakes

Johan Meyer est professeur au département d'ingénierie mécanique de la KU Leuven, en Belgique. Il est un expert internationalement reconnu dans le domaine de l'aérodynamique des parcs éoliens et des interactions entre les parcs éoliens et l'atmosphère. Il dirige une équipe de 10 chercheurs (docteurs et post-docs), spécialisés dans la simulation numérique, le calcul à haute performance, l'optimisation et le contrôle optimal des écoulements turbulents. Johan Meyer a obtenu une bourse de l'ERC sur le contrôle des parcs éoliens en 2012, et a été impliqué dans divers projets de l'UE sur l'énergie éolienne depuis lors. Il a été vice-président (2017-2019) et président (2019-2021) de l'Académie européenne de l'énergie éolienne. Il a également été rédacteur en chef adjoint de Computers and Fluids, et actuellement de Wind Energy Science.