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We study fluctuations of all co-existing energy exchange/transfer/transport processes in9
stationary periodic turbulence including those which average to zero and are not present10
in average cascade theories. We use a Helmholtz decomposition of accelerations which11
leads to a decomposition of all terms in the Kármán-Howarth-Monin-Hill (KHMH) equation12
(scale-by-scale two-point energy balance) causing it to break into two energy balances, one13
resulting from the integrated two-point vorticity equation and the other from the integrated14
two-point pressure equation. The various two-point acceleration terms in the Navier-Stokes15
difference (NSD) equation for the dynamics of two-point velocity differences have similar16
alignment tendencies with the two-point velocity difference, implying similar characteristics17
for the NSD and KHMH equations. We introduce the two-point sweeping concept and show18
how it articulates with the fluctuating interscale energy transfer as the solenoidal part of the19
interscale transfer rate does not fluctuate with turbulence dissipation at any scale above the20
Taylor length but with the sum of the time-derivative and the solenoidal interspace transport21
rate terms. The pressure fluctuations play an important role in the interscale and interspace22
turbulence transfer/transport dynamics as the irrotational part of the interscale transfer rate23
is equal to the irrotational part of the interspace transfer rate and is balanced by two-point24
fluctuating pressure work. We also study the homogeneous/inhomogeneous decomposition25
of interscale transfer. The statistics of the latter are skewed towards forward cascade events26
whereas the statistics of the former are not. We also report statistics conditioned on intense27
forward/backward interscale transfer events.28
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1. Introduction30

Modeling of turbulence dissipation is a cornerstone of one-point turbulent flow prediction31
methods based on the Reynolds Averaged Navier Stokes (RANS) equations such as the32
widely used : − Y and the : − l models (see Pope (2000), Leschziner (2016)) and also33
of two-point turbulence flow prediction methods based on filtered Navier Stokes equations,34
namely Large Eddy Simulations (LES) (see Pope (2000), Sagaut (2000)). The turbulence35
dissipation rate away from walls is intimately linked to the turbulence cascade (Pope36
2000; Vassilicos 2015). The physical understanding of this cascade which, to this day,37
has underpinned these prediction methods is based on Kolmogorov’s average cascade in38
statistically homogeneous and stationary turbulence. Notwithstanding recent advances which39
have shown that the turbulence dissipation and cascade are different fromKolmogorov’s both40
in non-stationary (see e.g. Vassilicos (2015); Goto & Vassilicos (2016); Steiros (2022)) and41
in non-homogeneous turbulence (Chen et al. 2021; Chen & Vassilicos 2022), Kolmogorov’s42
cascade is in fact valid only as an average cascade even in homogeneous stationary turbulence.43
Turbulence has been known to be intermittent since the late 1940s (see Frisch (1995) and44
references therein), and this intermittency has mainly been taken into account as structure45
function exponent corrections to Kolmogorov’s average picture. However, studies such as46
those by Schumacher et al. (2014) and Yasuda & Vassilicos (2018) examined intermittent47
fluctuations without reference to structure function exponents which require high Reynolds48
numbers to be well defined and to be predicted from Kolmogorov’s theory or various49
intermittency-accounting variants of this theory (see Frisch (1995) and references therein).50
Yasuda & Vassilicos (2018) concentrated their attention on the actual fundamental basis51
of Kolmogorov’s theory which is scale-by-scale equilibrium for statistically homogeneous52
and stationary turbulence, and not on the theory’s structure function and energy spectrum53
scaling consequences. The scale-by-scale equilibrium implied by statistical homogeneity and54
stationarity is that the average interscale turbulence energy transfer rate is balanced by nothing55
more than average scale-by-scale viscous diffusion rate, average turbulence dissipation rate56
and average energy input rate by a stirring force, irrespective of Reynolds number (except57
that the Reynolds number needs to be large enough for the presence of random fluctuations).58
It is most natural for a study of intermittency to start with the fluctuations around this59
balance, which means that along with the fluctuations of interscale transfer, dissipation,60
diffusion and energy input, all other fluctuating turbulent energy change rates need to be taken61
into account as well even if their spatio-temporal average is zero in statistically stationary62
homogeneous turbulence. The intermittency corrections to Kolmogorov’s average cascade63
theory which have been developed since the 1960s (e.g. see Frisch (1995); Sreenivasan &64
Antonia (1997)) are often based on the intermittent fluctuations of the local (in space and65
time) turbulence dissipation rate, yet Yasuda & Vassilicos (2018) demonstrated that these66
dissipation fluctuations are much less intense than the fluctuations of other turbulent energy67
change rates such as the non-linear interspace energy transfer rate (which is a scale-by-68
scale rate of turbulent transport in physical space), the fluctuating work resulting from the69
correlation of the fluctuating pressure gradient with the fluctuating velocity and the time-70
derivative of the scale-by-scale turbulent kinetic energy. Yasuda & Vassilicos (2018) made71
these observations using Direct Numerical Simulations (DNS) of statistically stationary72
periodic turbulence at low to moderate Taylor length-based Reynolds numbers from about73
80 to 170. Even though their Reynolds numbers were not high enough to test the high74
Reynolds number scaling consequences of Kolmogorov’s theory, they observed an energy75
spectrum with a near-decade power law range where the power law exponent was not too76
far from Kolmogorov’s −5/3. However, they did not observe a significant range of scales77
where the scale-by-scale equilibrium reduces to a scale-by-scale balance between average78
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interscale turbulence energy transfer rate and average turbulence dissipation as predicted by79
the Kolmogorov theory for statistically stationary homogeneous turbulence at asymptotically80
high Reynolds numbers. This high Reynolds number scale-by-scale equilibrium is the81
hallmark of the Kolmgorov average cascade and is typically not put in question by existing82
intermittency corrections to Kolmogorov’s theory (e.g. see Frisch (1995)).83
Given the low to moderate Reynolds numbers of the DNS used by Yasuda & Vassilicos84

(2018), their observations concern interscale turbulence energy transfers more than the85
turbulence cascade per se if the concept of turbulence cascade is taken to have meaning86
only at very large Reynolds numbers. They demonstrated that an interscale transfer picture87
appears that is radically different from Kolmogorov’s if the average is lifted and all spatio-88
temporal intermittent fluctuations are taken into account. This different picture involves highly89
fluctuating processes which vanish on average in statistically stationary and homogeneous90
turbulence and are not taken into account by the Kolmogorov theory for that very reason. We91
stress once more that Yasuda & Vassilicos (2018) made this demonstration in statistically92
homogeneous and stationary turbulence, the very type of turbulence where Kolmogorov’s93
theory has been designed for.94
It is hard to imagine that the complex turbulence energy transfer picture educed by the DNS95

of Yasuda & Vassilicos (2018) does not survive at asympotically high Reynolds numbers96
because it is known that the small-scale turbulence becomes increasingly intermittent with97
increasing Reynolds number (e.g. see Frisch (1995); Sreenivasan &Antonia (1997)). A DNS98
study at higher Reynolds numbers is nevertheless needed to ascertain this point. However,99
this is not the study proposed in this paper. In this paper our aim is to gain deeper insight into100
the fluctuating energy transfer picture revealed by the DNS of Yasuda & Vassilicos (2018)101
and we do this in terms of Helmholtz decomposed solenoidal and irrotational acceleration102
fields. Given that the computational cost involved in this Helmholtz decomposition is high103
(see following two sections) it is not possible for us to carry out our study for a variety of104
increasing Reynolds numbers and thereby combine it with a Reynolds number dependence105
study. We therefore limit ourselves to Reynolds numbers comparable to those of Yasuda &106
Vassilicos (2018).107
The radically different turbulence energy transfer picture which appears when all intermit-108

tent turbulence fluctuations are taken into account exhibits correlations between fluctuations109
of different processes: in particular, the fluctuating pressure-velocity term mentioned above110
is correlated with the interscale energy transfer rate, and the time derivative of the turbulent111
kinetic energy below a certain two-point length A is correlated with the inter-space energy112
transport rate at the same length A . Yasuda & Vassilicos (2018) explained the former113
correlation as resulting from the link between non-linearity and non-locality (via the114
pressure field) and the latter correlation as reflecting the passive sweeping of small turbulent115
eddies by large ones (Tennekes 1975). However, this sweeping (also termed “random Taylor116
hypothesis”) has been studied by reference to the one-point incompressible Navier-Stokes117
equation (e.g. Tennekes (1975), Tsinober et al. (2001)) rather than the two-point Kármán-118
Howarth-Monin-Hill (KHMH) equation, used by Yasuda & Vassilicos (2018) in their study119
of the fluctuating turbulence cascade. The KHMH equation is a scale-by-scale energy budget120
local in space and time, directly derived from the incompressible Navier-Stokes equations121
for the instantaneous velocity field (see Hill (2002)) without decomposition (e.g. Reynolds122
decomposition),without averages (e.g. Reynolds averages), andwithout any assumptionmade123
about the turbulent flow (e.g. homogeneity, isotropy, etc.). The initialmotivation of the present124
paper is to substantiate the claim ofYasuda&Vassilicos (2018) concerning correlations being125
caused by random sweeping by translating the sweeping analysis of Tsinober et al. (2001)126
to the KHMH equation. It is in doing so that we use the Helmholtz decomposition which127
Tsinober et al. (2001) introduced for the analysis of the acceleration field. We apply it to128
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the two-point Navier-Stokes difference (NSD) equation (which is the equation governing129
the dynamics of two-point velocity differences) and the KHMH equation which derives130
from it. This decomposition into solenoidal and irrotational terms breaks the Navier-Stokes131
equation into two equations, one being the irrotational balance between non-linearity and132
non-locality (pressure) and the other being the solenoidal balance between local unsteadiness133
and advection which encapsulates the sweeping. With this decomposition we substantiate all134
the correlations observed by Yasuda & Vassilicos (2018) between different KHMH terms135
representing different energy change processes, not only the ones caused by sweeping. In fact,136
we educe the relation between interspace turbulence energy transfer/transport and two-point137
sweeping (i.e. the randomTaylor hypothesis that we generalise to two-point statistics), and we138
extend the correlation study to solenoidal and irrotational sub-terms of the KHMH equation139
which leads to even stronger correlations than those found by Yasuda & Vassilicos (2018).140
This approach sheds some light on the way that two-point sweeping and interscale energy141
transfer relate to each other. We then ask whether the scale-by-scale equilibrium which is142
at the basis of Kolmogorov’s theory and which disappears when the average is lifted does143
nevertheless exist locally at relatively high energy transfer events, a question which leads144
us to consider whether two-point sweeping also holds at such events. Finally, we study the145
recently introduced decomposition (Alves Portela et al. 2020) of the interscale transfer rate146
into a homogeneous and an inhomogeneous interscale transfer component. We analyse their147
fluctuations and the correlations of these fluctuations, both unconditionally and conditionally148
on relatively rare intense interscale transfer events.149
In the following section we introduce our direct numerical simulations (DNSs) of forced150

periodic turbulence. Subsection 3.1 is a reminder of the application of this decomposition151
to the one-point Navier-Stokes equation by Tsinober et al. (2001). In this sub-section152
we also validate our DNS by retrieving the conclusions of Tsinober et al. (2001) on153
sweeping and by comparing our DNS results on one-point acceleration dynamics to theirs. In154
subsections 3.2-3.3 we apply the Helmholtz decomposition to the two-point NSD equation155
for the case of homogeneous/periodic turbulence and in subsection 3.4 we derive from the156
Helmholtz decomposedNavier-Stokes difference equations correspondingKHMHequations.157
Subsection 3.4 formalises the connection between the NS and KHMH dynamics, clarifies158
under which conditions a link exists between NS and KHMH dynamics and provides results159
on scale and Reynolds number dependencies of the KHMH dynamics. By considering the160
NSD dynamics in terms of solenoidal and irrotational dynamics, we derive two new KHMH161
equations. In section 4 we use these two new KHMH equations to obtain new results on162
the fluctuating cascade dynamics across scales both unconditionally and conditionally on163
rare extreme interscale energy transfer events. In section 5 we analyse the inhomogeneous164
and homogeneous contributions to the interscale energy transfer rate. Finally, section 6165
summarises our results.166

2. DNS of body-forced period turbulence167

Our study requires turbulence data from a turbulent flow where the Kolmogorov equilibrium168
theory for statistically homogeneous and stationary turbulence is applicable. We therefore169
followYasuda&Vassilicos (2018) and performDirect Numerical Simulations of body-forced170
periodic Navier-Stokes turbulence with the same pseudo-spectral code that they used. This171
code solves numerically the vorticity equation172

m8

mC
= ∇x × (u × 8) + a∇2

x8 + ∇x × f , (2.1)173

Focus on Fluids articles must not exceed this page length
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# 〈Re_〉C a/103 :max〈[〉C 2c/〈!〉C 〈_〉/〈!〉C )B/) Δ)/)
256 112 1.80 1.88 5.6 3.5 21 0.01
512 174 0.72 1.89 5.4 5.2 27 0.12

Table 1: Specifications of the numerial simulations. # denotes the number of grid points
in each Cartesian coordinate, '4_ the Taylor-scale Reynolds number, a the kinematic
viscosity, :max =

√
2/3# is the highest resolved wavenumber, [ and _ are, respectively,

the Kolmogorov and Taylor lengths and 〈. . .〉C denotes a time-average. ! is the integral
lengths calculated from the three-dimensional energy spectrum � (:, C):

! (C) = (3c/4)
∫ ∞
0 :−1� (:, C)3:/ (C) where  (C) is the kinetic energy per unit mass. )B

denotes the total sampling time over which converged statistics are calculated by sampling
randomly in space-time, Δ) denotes the time between samples and ) ≡ 〈!〉C/

√
2/3〈 〉C is

the turnover time.

subjected to the continuity equation174

∇x · u = 0, (2.2)175

where u(x, C), f (x, C) and 8(x, C) are the velocity, force and vorticity fields respectively and176
a is the kinematic viscosity. All fields are 2c-periodic in each one of the three orthogonal177
spatial coordinates G1, G2 and G3, and x = (G1, G2, G3). The pseudo-spectral method is fully178
dealised with a combination of phase-shifting and spherical truncation (Patterson & Orszag179
1971). The forcing method is a negative damping forcing (Linkmann & Morozov 2015;180
McComb et al. 2015b)181

f̂ (k, C) = (n, /2 5 )û(k, C) for 0 < |k | < : 5 , (2.3)182

= 0 otherwise, (2.4)183184

where f̂ (k, C) and û(k, C) are the Fourier transforms of f (x, C) and u(x, C) respectively, : 5 is185
the cutoff wavenumber, n, is the energy input rate per unit mass and  5 is the kinetic energy186
per unit mass in the wavenumber band 0 < |k | < : 5 . Note that this forcing is incompressible187
and has therefore no irrotational part. The addition of a potential, i.e. irrotational, term to188
the forcing would effectively just be subsumed into the pressure required to keep the flow189
incompressible.190
We perform two DNS of forced periodic/homogeneous turbulence with forcing parameters191

n, = 0.1 and : 5 = 2.5 at both simulation sizes 2563 grid points and 5123 grid points.Average192
statistics are given in table 1. For these two simulation sizes respectively, deviations around193
these averages are as follows: the standard deviations of ! are 0.007!1 and 0.006!1 (where194
!1 = 2c) and the maximum ! values are 0.188!1 and 0.202!1; the standard deviations of195
_ are 2.5% and 3.7% of 〈_〉C ; and the standard deviation of :max[ are 0.025 and 0.035.196
McComb et al. (2015a) performed DNS with the same combinations of # , a and forcing197

as in our simulations. The time-averaged Taylor-scale Reynolds numbers 〈Re_〉C , the ratios of198
the box size to the time-averaged integral length 2c/〈!〉C and the time-averaged Kolmogorov199
microscales 〈[〉C are all very similar (and 〈. . .〉C denotes a time-average). This study reports200
slightly poorer small-scale resolution :max〈[〉C than ours due to their more severe spherical201
truncation for dealiasing.202
We have also verified that the results do not significantly change when the flow is forced203

at small wavenumbers with an ABC forcing with � = � = � (Podvigina & Pouquet 1994).204
In contrast to the negative damping forcing, this forcing is independent of time and of the205
velocity field and is also maximally helical as ∇x × f is parallel to f (Galanti & Tsinober206
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2000). The helicity input of the ABC forcing has been studied in the context of the energy207
cascade in terms of its effect on the dissipation coefficient in Linkmann (2018).208
Our Reynolds numbers are relatively limited due to the high computational expense of our209

NSD and KHMH post-processing (which is typically at least one order of magnitude more210
expensive than the DNS). We detail the computational expense of the post-processing once211
the relevant terms have been introduced in section 3.3.212
In the following sectionwe showhowwe apply theHelmholtz decomposition to theKHMH213

equation. We start in subsection 3.1 by applying this decomposition to the one-point Navier-214
Stokes equation following Tsinober et al. (2001). In this sub-section we also validate our215
DNS by retrieving the conclusions of Tsinober et al. (2001), in particular on sweeping, and216
by comparing our DNS results on one-point acceleration dynamics to theirs. In subsections217
3.2 and 3.3 we apply the Helmholtz decomposition to the two-point Navier-Stokes difference218
equation for the case of homogeneous/periodic turbulence and in subsection 3.4 we derive219
from the Helmholtz-decomposed Navier-Stokes difference equations corresponding KHMH220
equations.221

3. Helmholtz decomposition of two-point Navier-Stokes dynamics and222
corresponding turbulent energy exchanges223

3.1. Solenoidal and irrotational acceleration fluctuations224

The Helmholtz decomposition states that a twice continously differentiable 3D vector field225
q(x, C) defined on a domain + ⊆ R3 can be expressed as the sum of an irrotational vector226
field q� (x, C) and a solenoidal vector field q( (x, C) (Helmholtz 1867; Stewart 2012; Bhatia227
et al. 2013)228

q� (x, C) = −∇xq(x, C), q( (x, C) = ∇x × H(x, C), (3.1)229

where q(x, C) is a scalar potential and H(x, C) is a vector potential. The Helmholtz decom-230
position and its interpretation can be applied to any vector field q(x, C) satisfying the above231
conditions, and Tsinober et al. (2001) applied it to fluid accelerations and the incompressible232
Navier-Stokes equation.233
The solenoidal and irrotational Navier-Stokes equations in homogeneous/periodic turbu-234

lence can be derived from the incompressible Navier-Stokes equation in Fourier space (see235
appendix A). After transformation back to physical space, one obtains236

mu

mC
+ (u · ∇xu)) = a∇2

xu + f) , (3.2)237

(u · ∇xu)! = −
1
d
∇x ? + f ! , (3.3)238

239

where superscripts ! and ) denote fields obtained from longitudinal and transverse parts240
of respective Fourier vector fields (see appendix A for precise definitions and (Pope 2000;241
Stewart 2012)), ? = ?(x, C) is the pressure field and d is the density. For any periodic vector242
field q, q! equals the irrotational field q� and q) equals the solenoidal field q( (see appendix243
A and Stewart (2012)). From equations (3.2)-(3.3), one arrives at (Tsinober et al. 2001)244

mu

mC
+ (u · ∇xu)( = a∇2

xu + f ( , (3.4)245

(u · ∇xu)� = −
1
d
∇x ? + f � , (3.5)246

247

which we refer to as Tsinober equations. (3.4) contains only solenoidal vector fields and (3.5)248
contains only irrotational vector fields. Note that in the case of an incompressible periodic249
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a2 a; a2( a2� a? a aa f 〈Re_〉C
〈q2〉/(3〈n〉3/2a−1/2) 8.47 5.87 5.93 2.55 2.55 2.60 0.05 0.007 112
〈q2〉/(3〈n〉3/2a−1/2) 14.28 11.21 11.26 3.03 3.03 3.09 0.05 0.005 174

〈q2〉/〈a2
2〉 1 0.69 0.70 0.30 0.30 0.31 0.0062 0.00081 112

〈q2〉/〈a2
2〉 1 0.78 0.79 0.21 0.21 0.22 0.0038 0.00032 174

Table 2: Normalised average magnitudes 〈q2〉/(3〈n〉3/2a−1/2) and 〈q2〉/〈a2
2〉 for

Navier-Stokes accelerations and forces q defined in the fourth paragraph of 3.1 for our two
〈Re_〉C . The accelerations and forces q are listed on the top row, q2 ≡ @8@8 , n denotes the

viscous dissipation rate and 〈. . .〉 denotes a spatio-temporal average.

velocity field, the velocity field is solenoidal, i.e. u = u( . This follows immediately from the250
scalar potential q being the solution to ∇2

xq = 0 with periodic boundary conditions for ∇xq,251
yielding q = 2>=BC.252
In appendix C we show that (3.4) is the integrated vorticity equation and that (3.5) is253

the integrated Poisson equation for pressure. The procedure presented in appendix C for254
obtaining the Tsinober equations is also used in this same appendix to obtain generalised255
Tsinober equations for non-homogeneous/non-periodic turbulence with arbitrary boundary256
conditions.257
Following the notation of Tsinober et al. (2001), we define a; ≡ mu/mC, a2 ≡ u ·258
∇xu, a ≡ a; + a2 , a? ≡ −1/d∇x ? and aa ≡ a∇2

xu. In such notation, equations (3.4)-259
(3.5) are a; + a2( = aa + f ( and a2� = a? + f � . Tsinober et al. (2001) in fact wrote260
these equations for statistically homogeneous/periodic Navier-Stokes turbulence without261
body forces, i.e. with f = 0. In general, however, the body forcing can be considered, as262
in the present work, to be non-zero and typically incompressible, i.e. f � = 0 but f B . 0,263
given that a compressible component of the forcing can be subsumed into the pressure field264
in incompressible turbulence. In body-forced statistically stationary homogeneous/periodic265
turbulence, the average forcing magnitude 〈 f 2〉, where the brackets denote spatio-temporal266
averaging, tends to be small compared to 〈a2

a〉 when the forcing is applied only to the largest267
scales (Vedula & Yeung 1999). Given that 〈 f · u〉 = 〈n〉, where n is the local turbulence268
dissipation rate, f 2 can be quite small if f is not close to orthogonal to the velocity field. This269
is indeed the case with the negative damping and ABC forcings used in this study. In cases270
where f is close to orthogonal to the velocity field, which is conceivable in electromagnetic271
situations (Lorentz force), f 2 needs to be large enough for 〈 f · u〉 to balance 〈n〉. In this272
study we have not considered such forcings and some of our results might not be applicable273
to such situations. Our results for the forcings we used indicate that 〈 f 2〉 is indeed much274
smaller than 〈a2

a〉 (see results from our DNS in table 2) and the probability to find values of275

f 2 large enough to be comparable to the other terms in the Tsinober equations is extremely276
small (see results from our DNS in figure 1 and table 3 where we see, in particular, that277
| f | > 0.1|a2( | in 15.3% and 6.3% of the spatio-temporal domain for the two Reynolds278
numbers respectively, the percentage being smaller for the higher Reynolds number. If we279

consider | f | >
√

0.1|a2( | ≈ 0.32|a2( |, we see that this is only satisfied in 0.8% and 0.3%280
of the spatio-temporal domain respectively. Furthermore, figure 1 and table 3 show that f281
is also typically much smaller than aa . We can therefore write a; + a2( ≈ aa , this being a282
good approximation in the majority of the flow for the majority of the time. With a2� = a?283
given that f � = 0, these two equations are very close to the way that Tsinober et al. (2001)284
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U 0.001 0.01 0.1 1
Prob(a2

a > Ua
2
2(
) (0.893, 0.808) (0.441, 0.308) (0.068, 0.037) (0.004, 0.002)

Prob( f 2 > Ua2
2(
) (0.707, 0.476) (0.155, 0.063) (0.008, 0.003) (3 ∗ 10−4, 9 ∗ 10−5)

Table 3: Probabilities of events q2 > U p2 for NS terms (q, p) with U specified on the top
row. The two probability values in the brackets for each (q, p, U) combination refer to

〈Re_〉C = 112 and 〈Re_〉C = 174 respectively.

0 1 2 3 4 5
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cS

〉

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
/
P
m

a
x

10−410−310−210−1

0.00

0.25

0.50

0.75

1.00

ap acS aν f

(a)

0 1 2 3 4 5

q2/〈a2
cS

〉

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10−410−310−210−1

0.00

0.25

0.50

0.75

1.00(b)

Figure 1: Probability density functions (PDFs) % of Navier-Stokes acceleration and force
magnitudes q2 for terms q listed at the top of (0). %max for the PDF of q2 denotes its

maximum value. (0) 〈Re_〉C = 112, (1) 〈Re_〉C = 174.

originally wrote them (a; + a2( = aa and a2� = a? for the f ≡ 0 case) and we can therefore285
expect our DNS to retrieve the DNS results and conclusions of Tsinober et al. (2001).286
The DNS of Tsinober et al. (2001) showed that aa is typically negligible (i.e. in a statistical287

sense, not everywhere at any time in the flow) compared to all the other acceleration terms in288
the Tsinober equations, namely a; , a2( , a2� and a?. This is confirmed by our DNS results in289
tables 2-3 and in figure 1 which are for similar Reynolds numbers to those of Tsinober et al.290
(2001) and where we report rms values, and probabilities of various acceleration terms. It is291
worth noting that aa is not everywhere always negligible, at these Reynolds numbers at least.292
For example, |aa | > 0.1|a2( | in 44.1% and 30.8% of the space-time domain for our lower and293
higher Reynolds number respectively; and if we consider |aa | > 0.32|a2( |, this is satisfied294
in 6.8% and 3.7% of cases. Note that the DNS results of Tsinober et al. (2001) suggest295
that the viscous force typically decreases in magnitude compared to a2( as the Reynolds296
number increases and our results for our two Reynolds numbers agree with this trend. One297
may therefore expect the the first of the two Tsinober equations for homogeneous/periodic298
turbulence with the kind of forcing we consider here to typically reduce to299

a; + a2( ≈ 0, (3.6)300
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〈Re_〉C 〈cos(a2� , a?)〉 〈cos(a, a?)〉 〈cos(a; , a2( )〉 〈cos(a; , a2)〉 〈cos(a2 , a?)〉
112 0.9999 0.972 -0.985 -0.726 0.388
174 0.9999 0.975 -0.990 -0.796 0.308

Table 4: NS average alignments 〈cos(q, p)〉 for NS acceleration pairs (q, p).

at high enoughReynold numbers, the approximation being valid in the sense that the neglected301
terms are significantly smaller than the retained ones in the majority of the flow for the302
majority of the time. There exist, however, some relatively rare spacio-temporal events303
where the neglegted viscous force and/or body force are significant (for example, as stated304
a few lines above, |aa | is larger than 0.32|a2( | in 6.8% and 3.7% of all spatio-temporal305
events for our lower and higher Reynolds numbers respectively) and where the right hand306
side of (3.6) is therefore not zero. In fact, many of these relatively rare events can be expected307
to account for some or even much of the average turbulence dissipation which is a sum of308
squares of fluctuating velocity gradients. More generally, one cannot use equation (3.6) to309
derive statistics of fluctuating velocity gradients, as in Tang et al. (2022) for example.310
The second of the two Tsinober equations, namely311

a2� = a?, (3.7)312

is exact everywhere and at any time and we keep it as it is.313
Equations (3.6)-(3.7) suggest similar magnitudes and strong alignment between a; and314
−a2( and equal magnitudes as well as perfect alignment between a2� and a?. Such315
magnitudes and alignments were observed in the DNS of Tsinober et al. (2001) and are also316
strongly confirmed by our own DNS in table 4 (a2( and a2� are calculated on the basis of317
equation (A 1) in appendixA and aliasing errors associatedwith non-linear terms are removed318
by phase-shifting and truncation (Patterson & Orszag 1971)). As suggested by previous DNS319
and experimental results (e.g. Tsinober et al. (2001); Chevillard et al. (2005); Yeung et al.320
(2006)), and as also supported by our own DNS results in tables 2 and 4, a ≈ a? and321

〈a2
;
〉/〈a2〉 ∼ 〈Re_〉1/2C In fact, the scaling 〈a2

;
〉/〈a2〉 ∼ 〈Re_〉1/2C follows from the analysis of322

Tennekes (1975) who expressed the concept of passive sweeping by pointing out that "at high323
Reynolds number the dissipative eddies flow past an Eulerian observer in a timemuch shorter324
than the time scale which characterizes their own dynamics". It then follows from equations325

(3.6)-(3.7), from 〈a2
;
〉/〈a2〉 ∼ 〈Re_〉1/2C and from 〈a2

?〉 ≈ 〈a2〉 that 〈a2
2(
〉/〈a2

2�
〉 ∼ 〈Re_〉1/2C326

with increasing 〈'4_〉C , i.e., a2 becomes increasingly solenoidal with increasing 〈'4_〉C . In327
this way, the anti-alignment in (3.6) leads to an increasing anti-alignment tendency between328
a; and a2 with increasing Reynolds number, which is consistent with the notion of passive329
sweeping of small eddies by large ones, i.e. the randomTaylor hypothesis of Tennekes (1975).330
These observations and conclusions were all made by Tsinober et al. (2001). They are now331
confirmed by our DNS results in table 2 and this reiterates that they do not require a large332
Taylor length-based Reynolds number to emerge.333
As a final point, it is a general property of isotropic random vector fields q that 〈q� (x, C) ·334

q( (x + r, C)〉G = 0 for any r (including r = 0), where 〈...〉x signifies a spatial average (Monin335
et al. 1975). Thus, 〈a2

2〉 = 〈a2
2�
〉 + 〈a2

2(
〉 if the small-scale turbulence is isotropic. Both our336

DNS and the DNS of Tsinober et al. (2001) confirm this equality. From this equality and337

from (3.6), 〈a2
2(
〉/〈a2

2�
〉 ∼ 〈Re_〉1/2C , (3.7), a ≈ a? and 〈a2〉 � 〈a2

a〉 � 〈 f 2〉, we have all in338
all339

〈a2
2〉 > 〈a2

2(
〉 ≈ 〈a2

; 〉 � 〈a
2
2�
〉 = 〈a2

?〉 ≈ 〈a2〉 � 〈a2
a〉 � 〈 f 2〉, (3.8)340
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for large enough 〈Re_〉C . The average magnitude ordering in (3.8) is confirmed in our DNS341
(see table 2) and theDNS of Tsinober et al. (2001) even though the Reynolds numbers of these342
DNS are moderate and so the difference between 〈a2

2�
〉 and 〈a2

;
〉 is not so large. Tsinober’s343

way to formulate sweeping is encapsulated in 〈a2
2(
〉 ≈ 〈a2

;
〉 � 〈a2

2�
〉 = 〈a2

?〉 ≈ 〈a2〉 and in344
the alignments implied by equations (3.6)-(3.7) which are also statistically confirmed by our345
DNS in table 4.346

3.2. From one-point to two-point Navier-Stokes dynamics in periodic/homogeneous347
turbulence348

The Navier-Stokes difference (NSD) equation at centroid x and separation vector r is derived349
by subtracting the Navier-Stokes (NS) equation at location x+ = x+ r/2 from the NS equation350
at location x− = x − r/2. Defining Xq(x, r, C) ≡ q(x + r/2, C) − q(x − r/2, C) for any NS351
term q(x, C), the NSD equation (Hill 2002) reads352

mXu

mC
+ Xa2 = −

1
d
∇xX? + Xaa + X f , (3.9)353

The NSD equation governs the evolution of Xu, which can be thought of as pertaining to the354
momentum at scales smaller or comparable to |r |. We derive the solenoidal NSD equation by355
subtracting equation (3.4) at x − r/2 from the same equation at x + r/2. The same operation356
is used to derive the irrotational NSD equation. The resulting equations read357

mXu

mC
+ Xa2( = Xaa + X f ( , (3.10)358

Xa2� = −
1
d
∇xX? + X f � , (3.11)359

360

where Xa2( (x, r, C) ≡ a2( (x + r/2, C) − a2( (x − r/2, C) and Xa2� (x, r, C) ≡ a2� (x + r/2, C) −361
a2� (x − r/2, C) and note that these terms refer to solenoidal and irrotational terms in x-space362
rather than r-space. The forcings we consider have no irrotational part and so X f � = 0.363
At the moderate 〈Re_〉C of our DNS, the approximate equation (3.6) is valid in the sense364
explained in the text which accompanies it in the previous sub-section, i.e. for a majority365
of spacio-temporal events. If the magnitude of the separation vector r is not too small for366
viscosity to matter directly nor too large for the forcing to be directly present, we may safely367
subtract equation (3.6) at x − r/2 from equation (3.6) at x + r/2 to obtain an approximation368
to (3.10) for sufficiently high Reynolds number: this is the first of the two equations below369
where Xa; ≡ mXu/mC:370

Xa; + Xa2( ≈ 0, (3.12)371

Xa2� = −
1
d
∇xX?. (3.13)372

373

The second equation, equation (3.13), follows directly from (3.11) with X f � = 0 without any374
restriction on either r or Reynolds number and is exact.375
Like equation (3.6), (3.12) can be expected to be valid broadly except where and when376

Xaa + X f ( is large enough not to be negligible. Figure 2 shows statistically converged377
estimations of exceedance probabilities of NSD viscous and external force terms which378
suggest that (3.12) is indeed a good approximation for most of space and time at the Reynolds379
numbers of our two DNS, at the very least for separation distances larger than 〈_〉C and380
smaller than 〈!〉C . With regards to the forcing, Prob( |X f | > 0.32|Xa2( |) is typically of the381
order of 1%, in particular for our higher Reynolds number. With regards to the viscous force,382

Rapids articles must not exceed this page length
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Figure 2: Navier-Stokes difference (NSD) exceedance probabilities Prob(q2 > U p2) for
the NSD terms on top of (0) as a function of separation length A3 = |r |. The legend entries

read (q, U, p) for the NSD terms introduced in the first paragraph of 3.2. (0)
〈Re_〉C = 112, 〈!〉C = 3.5〈_〉C . (1) 〈Re_〉C = 174, 〈!〉C = 5.2〈_〉C . NSD terms are sampled

at scale A3 = |r | at random orientations r.

Prob( |Xaa | > 0.32|Xa2( |) is typically of the order of 5% for A > 〈_〉C and even less for our383
higher Reynolds number.384
The link between non-linearity and non-locality (via the pressure field) invoked in the two-385

point analysis of Yasuda & Vassilicos (2018) has its root in equation (3.13) which parallels386
(3.7) and states that Xa2� and Xa? are perfectly aligned and have the same magnitudes.387
Furthermore, similarly to the way that equation (3.6) supports the concept of sweeping of388
small turbulent eddies by large ones in the usual one-point sense, (3.12) suggests similar389
magnitudes for and strong alignment between Xa; and −Xa2( . A two-point concept of390
sweeping similar to the one of Tennekes (1975) which relies on alignment between Xa; and391
−Xa2 should also require that Xa2 tends towards Xa2B with increasing Reynolds number,392
i.e. that Xa2 becomes increasingly solenoidal. We therefore seek to obtain inequalities and393
approximate equalities similar to (3.8). Note that equations (3.12)-(3.13) immediately imply394
〈Xa2

2(
〉 ≈ 〈Xa2

;
〉, 〈Xa2

2�
〉 = 〈Xa2

?〉 and 〈Xa2
?〉 ≈ 〈Xa2〉. It therefore remains to argue that395

〈Xa2
2〉 > 〈Xa2

2(
〉 � 〈Xa2

2�
〉 which is exactly what we need to complete the new concept of396

two-point sweeping.397
We start from398

〈Xq · Xq〉(r) = 〈q+ · q+〉 − 〈q+ · q−〉 + 〈q− · q−〉 − 〈q− · q+〉, (3.14)399

= 2
[
〈q · q〉 − 〈q+ · q−〉(r)

]
, (3.15)400401

where q+ ≡ q(x + r/2) and q− ≡ q(x − r/2) and where we used 〈q+ · q+〉 = 〈q− · q−〉 =402
〈q · q〉 because of statistical homogeneity/periodicity. Previous studies (Hill & Thoroddsen403
1997; Vedula & Yeung 1999; Xu et al. 2007; Gulitski et al. 2007) demonstrated that fluid404
accelerations, pressure-gradients and viscous forces have limited spatial correlations in terms405
of alignments at scales larger than 〈_〉C for moderate and high 〈Re_〉C . Thus, if we assume406
the two-point term to be negligible compared to the one-point term in Eq. (3.15) for scales407
|r | larger than 〈_〉C , we have that 〈Xq · Xq〉(r) is approximately equal to 2〈q · q〉 for |r | larger408
than 〈_〉C . From (3.8) we therefore obtain409

〈Xa2
2〉 > 〈Xa2

2(
〉 ≈ 〈Xa2

; 〉 � 〈Xa
2
2�
〉 = 〈Xa2

?〉 ≈ 〈Xa2〉 � 〈Xa2
a〉 � 〈X f 2〉, (3.16)410
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Figure 3: (01,11) spatio-temporal averages of spherically averaged NSD magntiudes
(Xq2)0 ≡ (cA2

3
)−1 ∭

|r |=A3 Xq(x, r, C) · Xq(x, r, C), 3r for NSD terms Xq listed on top of
the figures as a function of A3 : (01) 〈Re_〉C = 112, (11) 〈Re_〉C = 174. The magnitudes of
the terms Xa; and Xa2( ) overlap and the magntiudes of the terms (Xa? , Xa and Xa2� ) also
overlap. (02, 12) average NSD alignments between NSD terms (Xq, Xw) listed on top of

the figures as a function of A3 : (02) 〈Re_〉C = 112, (12) 〈Re_〉C = 174.

for |r | larger than 〈_〉C , but 〈Xa2
2〉 > 〈Xa2

2(
〉 and 〈Xa2

2�
〉 = 〈Xa2

?〉 are in fact valid for any411

r. Inequality 〈Xa2
2〉 > 〈Xa2

2(
〉 follows from 〈Xa2

2〉 = 〈Xa2
2�
〉 + 〈Xa2

2(
〉 which itself follows412

from 〈a2� (x, C) · a2( (x + r, C)〉G = 0 for any r if the turbulence is isotropic (Monin et al.413
1975). Equality 〈Xa2

2�
〉 = 〈Xa2

?〉 follows directly from (3.13) which is exact and holds for414
any r and any Reynolds number. Of equalities/inequalities (3.16), the ones that we did not415
already directly derive from/with equations (3.12)-(3.13) are 〈Xa2

2〉 > 〈Xa2
2(
〉 � 〈Xa2

2�
〉416

and 〈Xa2
a〉 � 〈X f 2〉. The present way to formulate the new concept of two-point sweeping417

follows from Tsinober’s way to formulate sweeping and is encapsulated in Xa2
2(
〉 ≈ 〈Xa2

;
〉 �418

〈Xa2
2�
〉 = 〈Xa2

?〉 ≈ 〈Xa2〉 and in the alignments implied by equations (3.12)-(3.13). We419
confirm equations (3.12)-(3.13)-(3.16) with our DNS in the remainder of this subsection.420

To test (3.16) with our DNS data in a manageable way, we calculate spatio-temporal421
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averages of r-orientation-averaged quantities422

(Xq · Xq)0 (x, A3 , C) ≡
1
cA2
3

∭
|r |=A3

Xq(x, r, C) · Xq(x, r, C), 3r, (3.17)423

which we plot in figure 3(01,02) as ratios of such quantities versus two-point length A3 .424
In figure 3(01,02) we plot spatio-temporal averages of r-orientation-averaged quantities425
(3.17) for various acceleration/force terms in the NSD and the Helmholtz decomposed426
NSD equations. A comparison of relative magnitudes in the plots of figure 3(01,02) with427
relative magnitudes in table 2 makes it clear that the results are consistent with (3.16) and428
〈Xq · Xq〉(r)/〈q · q〉 close to 2 for A3 > 〈_〉C at both 〈'4_〉C to a good degree of accuracy429
(〈Xq · Xq〉(r)/〈q · q〉 increases from 1.8 to 2.0 as A3 grows from 〈_〉C to 〈!〉C ). Note, in430
particular, that in Figure 3(01,11) the average quantities corresponding to Xa; and Xa2(431
overlap and those corresponding to Xa?, Xa and Xa2� also overlap. At scales below 〈_〉C , the432
average relative magnitudes change slightly, but the NSD magnitude separations still abide433
by (3.16), the NSD analogue to (3.8), at all scales.434
In figure 3(11,12) we use our DNS data to plot spatio-temporal averages of r-orientation-435

averaged cosines of angles between various NSD terms Xq and Xw to test for average436
alignments as a function of A3 . These alignment results are of course in perfect agreement437
with (3.13) but they are also in good agreement with (3.12) and acceptable agreement438
with Xa ≈ Xa? (the cosine of the angle between these two acceleration vectors is higher439
than 0.9 for all A3). They also show that we should not expect Xa; to be extremely well440
aligned with −Xa2 at our moderate Reynolds numbers. This demonstrates the pertinence of441
the solenoidal-irrotational decomposition which has revealed very good alignments at our442
moderate Reynolds numbers for which there are significantly weaker alignments without this443
decomposition.444
In conclusion, figure 3 provides strong support for equations (3.12)-(3.13)-(3.16) which445

establish the two-point link between non-linearity and non-locality, and also a concept of446
two-point sweeping.447

3.3. Interscale transfer and physical space transport accelerations448

The convective non-linearity is responsible for non-linear turbulence transport through449
space and non-linear transfer through scales. We want to separate these two effects and450
therefore decompose the two-point non-linear acceleration term Xa2 into an interscale transfer451
acceleration aN and a physical space transport acceleration aT (Hill 2002), i.e Xa2 = aN +aT452
with453

aT (x, r, C) =
1
2
(u+ + u−) · ∇xXu, aN (x, r, C) = Xu · ∇rXu. (3.18)454

With this decomposition of the non-linear term, the NSD equation (3.9) reads455

mXu

mC
+ aN + aT = −

1
d
∇xX? + Xaa + X f . (3.19)456

We note relations aN = Xa� + D+9
m
mG−

9
u− − D−

9
m
mG+

9

u+ and aT = Xa� − D+9
m
mG−

9
u− + D−

9
m
mG+

9

u+457

which can be easily used to show that 〈a2
N
〉 and 〈a2

T〉 tend towards each other as the amplitude458
of the separation vector r grows above the integral length scale. We report DNS evidence of459
this tendency, below in this paper.460
We want to consider the effects of the interscale transfer and interspace transport terms in461

the solenoidal and irrotational NSD dynamics and we therefore need to break down the NSD462
equation (3.19) into two equations, one irrotational and one solenoidal. We therefore perform463
Helmholtz decompositions in centroid space x for a given separation r at time C, for example464
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Figure 4: Average magnitudes 〈Xq2〉0 of NSD terms present in the irrotational and
solenoidal NSD equations (3.21)-(3.22) listed on top of (0). All values have been

normalised with 〈Xa2
2(
〉0 at the largest considered separation A3 . The magnitudes of the

terms (Xa; + aT
(
and aN

(
) overlap and the magnitudes of the terms (1/2Xa2� , aT� and

aN
�
) also overlap. (0) 〈Re_〉C = 112, (1) 〈Re_〉C = 174.

Xq(x, r, C) = Xq
�
(x, r, C) + Xq

(
(x, r, C) where Xq

�
(x, r, C) and Xq

(
(x, r, C) are, respectively,465

the irrotational and solenoidal parts in centroid space of Xq(x, r, C). This decomposition in466
centroid space differs in general from the difference of theHelmholtz decomposed terms in the467
NS equations which gives equations (3.10)-(3.11), but in periodic/homogeneous turbulence468
Xq� = Xq� and Xq( = Xq( (see appendix B). Furthermore, from Xa2 = aN + aT immediately469
follow Xa2

(
= aN

(
+ aT

(
and Xa2

�
= aN

�
+ aT

�
. Thus, we can rewrite the NSD solenoidal470

and irrotational equations (3.10)-(3.11) as471

aN
�
+ aT

�
= Xa?, (3.20)472

Xa; + aN
(
+ aT

(
= Xaa + X f , (3.21)473474

in periodic/homogeneous turbulence.475
We emphasize that the interscale transfer term aN

(
is related non-locally in space to two-476

point vortex stretching and compression terms governing the evolution of vorticity difference477
X8. This follows from the fact that, as for the Tsinober equations, the NSD solenoidal478
equation is an integrated vorticity difference equation. We provide mathematical detail on479
the connection between aN

(
and X8 in appendix C. This relation between aN

(
and the480

vorticity difference dynamics provides an instantaneous connection between the interscale481
momentum dynamics and two-point vorticity stretching and compression dynamics.482
Equation (3.20) can also be obtained by integrating the Poisson equation for X? in centroid483

space similarly to equation (3.21) which, as alreadymentioned, can be obtained by integrating484
the vorticity difference equation in that same space. We use this approach in appendix C485
to derive these equations for periodic/homogeneous turbulence but also their generalised486
form for non-homogeneous turbulence. By deriving the exact equations for aT

�
(x, r, C) and487

aN
�
(x, r, C) in Fourier centroid space we show in appendix B that we have aT

�
(x, r, C) =488

aN
�
(x, r, C) in periodic/homogeneous turbulence. This result combined with (3.20) yields489

aN
�
= aT

�
=

1
2
Xa? =

1
2
Xa2� , (3.22)490
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Figure 5: Average alignments of NSD terms (Xq, Xw) listed on top of (0) and (1). The
average alignments of (Xa? , aT

�
) and (Xa? , aN

�
) overlap: (0) 〈Re_〉C = 112, (1)

〈Re_〉C = 174.

in periodic/homogeneous turbulence. In figure 4 we plot spatio-temporal averages of r-491
orientation-averaged quantities (3.17) for various acceleration/force terms in the NSD and492
the Helmholtz decomposed NSD equations and in figure 5 we plot spatio-temporal averages493
of r-orientation-averaged cosines of angles between various two-point acceleration terms in494
these equations. The overlapping magnitudes in figure 4 and the average alignments in figure495
5 confirm (3.22), or rather validate our DNS given that (3.22) is exact.496
The computational procedure to calculate the various r-orientation-averaged terms in497

these figures is computationally expensive. To calculate the NSD irrotational and solenoidal498
parts of the interscale and interspace transport terms at a given time C and separation r,499
we use the pseudo-spectral algorithm of Patterson & Orszag (1971) with one phase-shift500
and spherical truncation. We apply this algorithm to XD 9 and mXD8/mA 9 for the interscale501
transfer and for (D+

9
+ D−

9
)/2 and mXD8/mG 9 for the interspace transfer. Hence, we express502

these vectors/tensors in Fourier-space (see equations B 13-B 16 in appendix B) and apply the503
pseudo-spectral method of Patterson&Orszag (1971) to calculate âT (k, r, C) and âN (k, r, C)504
without aliasing errors. We next decompose these fields to irrotational and solenoidal fields505
with the projection operator and inverse these fields to physical space to obtain aN

(
(x, r, C),506

aN
�
(x, r, C), aT

(
(x, r, C) and aT

�
(x, r, C). These fields can then be sampled over x to calculate507

e.g. a2
N
(

(x, r, C) or KHMH terms such as 2Xu · aN
(
(x, r, C) (see section 3.4). If we assume508

that the cost of a DNS time-step is similar to the cost of the pseuod-spectral method to509
calculate the NS non-linear term, the calculation of solenoidal and irrotational interspace510
and interscale transfers for one C and one r has similar cost to one DNS time-step. The total511
cost of the pseudo-spectral post-processing method is proportional to the total number #A of512
separation vectors r that we use in our spherical averaging across scales A3 and to the total513
number )B/Δ) of samples in time (see table 1). With a total number of separation vectors514
#A ∼ 103 − 104 and our )B/Δ) values, the total cost of the pseudo-spectral post-processing515
method in terms of DNS time-steps is at least one order of magnitude larger than the cost of516
the DNS itself. This high post-processing cost limits the possible number of grid points in517
this study. If we estimate the wall time of a 10243 simulation to be approximately 10 days,518
the post-processing would require approximately three to four months.519
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The NSD solenoidal equation (3.21) describes a balance between the time-derivative,520
solenoidal interscale transfer, solenoidal interspace transport, viscous and forcing terms.521
From the point we made in the sentence directly following equation (3.19), we expect 〈a2

T
(

〉522

and 〈a2
N
(

〉 to tend to become equal to each other as the amplitude of r tends to values523

significantly larger than 〈!〉C . Figure 4 confirms this trend for the second order orientation-524
averaged moments of aT

(
and aN

(
. For brevity, in what follows we refer to such statistics525

as second order magnitudes. With decreasing A3 , the magnitudes of aN
(
decrease relative to526

those of aT
(
. At all scales A3 > 〈_〉C the second order magnitudes of aT

(
and aN

(
are one527

order of magnitude larger than those of the viscous term Xaa and this separation is greater528
for the larger 〈Re_〉C . The magnitudes of Xaa are themselves much larger than those of X f529
(not shown in figure 4 for not overloading the figure but see figure 301). These observations530
suggest that the solenoidal NSD equation (3.21) reduces to the approximate531

Xa; + aT
(
≈ −aN

(
, (3.23)532

where this equation is understood as typical in terms of second order magnitudes: i.e. in533
most regions of the flow for the majority of the time, the removed terms are at least one534
order of magnitude smaller than the retained terms. (As for the NS dynamics, we do expect535
dynamically important regions localised in space and time where the dynamics differ from536
(3.23).) Figure 4 confirms equation (3.23) in a second order sense and shows that the537
relatively rare spatio-temporal events which are neglected when writing equation (3.23) are538
indeed present as the second order statistics do show a very small deviation from equation539
(3.23). An additional important observation to be made from figure 4 is that Xa2( tends to540
become increasingly dominated by aT

(
rather than aN

(
as A3 decreases.541

Equation (3.23) is the same as equation (3.12), and similarly to figure 3 which provides542
support for equation (3.12), figures 4 and 5 provide strong support for equation (3.23), in543
particular for A3 > 〈_〉C . It is interesting to note that the average alignment between the left544
and the right hand side of equation (3.23) lies between 90% and 100% (typically 95%) for545
A3 > 〈_〉C . Whilst this is strong support for approximate equation (3.23), the fact that the546
alignment is not 100% is a reminder of the nature of the approximation, i.e. that relatively rare547
spatio-temporal events do exist where the viscous and/or driving forces are not negligible.548
At length-scales A3 6 〈_〉C , the alignment between Xa; and −aT

(
improves while the549

alignment between Xa; +aT
(
and −aN

(
worsens with decreasing A3 (see figure 5) presumably550

because of direct dissipation and diffusion effects, so that Xa; + aT
(
≈ 0 becomes a better551

approximation than equation (3.23) at A3 < 0.5〈_〉C . This observation is consistent with552
our parallel observation that the magnitude of aT

(
increases while the magnitude of aN

(
553

decreases with decreasing A3 and that Xa2( in equation (3.12) tends to be dominated by aT
(

554
at the very smallest scales.555
On the other end of the spectrum, i.e. as the length scale A3 grows towards 〈!〉C , the556

alignment between Xa; and −aT
(
worsens while the alignment between Xa; and −aN

(
557

improves (see figure 5), both reaching a comparable level of alignment/misalignment558
which contribute together to keep approximation (3.23) statistically well satisfied with 95%559
alignment between Xa; + aT

(
and −aN

(
.560

The strong anti-alignment between aT
(
and Xa; , increasingly so at smaller A3 (see figure561

5) expresses the sweeping of the two-point momentum difference Xu at scales A3 and smaller562
by the mainly large scale velocity (u+ + u−)/2. Note that this two-point sweeping differs563
from anti-alignment between Xa; and Xa2 for two reasons. Firstly, by using the Helmholtz564
decomposition we have removed the pressure effect embodied in the a2� contribution to a2565
which balances the pressure-gradient. This was first understood in Tsinober et al. (2001) in566
a one-point setting and is here extended to a two-point setting. Secondly, Xa2( is the sum of567
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an interspace transport aT
(
and an interscale transfer term aN

(
such that the interpretation568

of two-point sweeping as anti-alignment between a2( and a; as sweeping cannot be exactly569
accurate. The advection of Xu by the large scale velocity is attributable to aT

(
, and figure570

5 shows that the two-point sweeping anti-alignment between Xa; and aT
(
increases with571

decreasing A3 .572
The sweeping anti-alignment between Xa; and aT

(
is by no means perfect even if it reaches573

about 90% accuracy at A3 < 〈_〉C , as is clear from the similar magnitudes and very strong574
alignment tendency between Xa; + aT

(
and −aN

(
at scales |r | > 〈_〉C (see figures 4 and 5).575

Note, in passing, that the Lagrangian solenoidal acceleration Xa; + aT
(
and aN

(
are both576

Galilean invariant. Equation (3.23)may be interpreted tomean that the Lagrangian solenoidal577
acceleration of Xu (which is actually solenoidal) moving with the mainly large scale velocity578
(u+ + u−)/2, namely Xa; + aT

(
, is evolving in time and space in response to −aN

(
: when579

there is an influx of momentum from larger scales there is an increase in Xa; + aT
(
and Xu580

and vice versa.581

3.4. From NSD dynamics to KHMH dynamics in homogeneous/periodic turbulence582

The scale-by-scale evolution of |Xu |2 locally in space and time is governed by a KHMH583
equation. This makes KHMH equations crucial tools for examining the turbulent energy584
cascade. The original KHMH equation and the new solenoidal and irrotational KHMH585
equations that we derive below are simply projections of the corresponding NSD equations586
onto 2Xu. Hence, KHMH dynamics depend on NSD dynamics and the various NSD terms’587
alignment or non-alignment tendencies with 2Xu. In this subsection we present five KHMH588
results all clearly demarcated and identified in italics.589
By contracting the NSD equation (3.9) with 2Xu, one obtains the KHMH equation (Hill590

2002; Yasuda & Vassilicos 2018):
591

m

mC
|Xu |2 +

D+
:
+ D−

:

2
m

mG:
|Xu |2 + m

mA:

(
XD: |Xu |2

)
= − 2

d

m

mG:

(
XD:X?

)
+ 2a

m2

mA2
:

|Xu |2592

+ a
2
m2

mG2
:

|Xu |2 −
[
2a

( mD+8
mG+
:

)2 + 2a
( mD−8
mG−
:

)2
]
+ 2XD:X 5: , (3.24)593

where no fluid velocity decomposition nor averaging operations have been used. In line with594
the naming convention of Yasuda & Vassilicos (2018) this equation can be written595

AC + T + N = T? + DA ,a + DG,a − n + I, (3.25)596

where the first, second and third terms on the left hand sides of equations (3.24) and (3.25)597
correspond to each other and so do the first, second, third, fourth and fifth terms on the598
right hand sides. Preempting notation used further down in this paper, equation (3.25) is also599
writtenA = T? + D + I orAC + A2 = T? + D + I whereA2 ≡ T +N ,A ≡ AC + A2 and600
D ≡ DA ,a + DG,a − n .601
To examine the KHMH dynamics in terms of irrotational and solenoidal dynamics we602

contract the irrotational and solenoidal NSD equations with 2Xu to derive what we refer to as603
irrotational and solenoidal KHMH equations. Each of the KHMH terms can be subdivided604
into a contribution from theNSD irrotational part and a contribution from theNSD solenoidal605
part of the respective term in the NSD equation. A solenoidal KHMH term corresponding606
to a Xq(x, r, C) or q(x, r, C) term in equation (3.21) equals Q

(
= 2Xu · Xq

(
or Q

(
= 2Xu · q

(
,607

and an irrotational KHMH term corresponding to a Xq(x, r, C) or q(x, r, C) term in equation608
(3.22) equals Q

�
= 2Xu · Xq

�
or Q

�
= 2Xu · q

�
. With Q = 2Xu · Xq or Q = 2Xu · q, we have609

Q = Q
�
+ Q

(
. The irrotational and solenoidal KHMH equations for periodic/homogeneous610
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turbulence follow from equations (3.21) and (3.22) respectively and read611

AC + T( + N( = DA ,a + DG,a − n + I, (3.26)612

N
�
= T

�
=

1
2
T?, (3.27)613

614

where use has been made of the fact that the velocity and velocity difference fields are615
solenoidal. These two equations are our first KHMH result.616
Space-local changes in time of |Xu |2, expressed viaAC , are only due to solenoidal KHMH617

dynamics in equation (3.26) which include interspace transport, interscale transport, viscous618
and forcing effects. The irrotational KHMH equation (3.27) formulates how the imposition619
of incompressibility by the pressure field affects interspace and interscale dynamics and, in620
turn, energy cascade dynamics. Generalised solenoidal and irrotational KHMH equations621
also valid for non-periodic/non-homogeneous turbulence are given in appendix C.622
We first consider the spatio-temporal average of these equations in statistically steady623

forced periodic/homogeneous turbulence. As 〈T?〉 = 0, we obtain from equation (3.27),624
〈N

�
〉 = 〈T

�
〉 = 0. As 〈T

(
〉 + 〈T

�
〉 = 〈T 〉 = 0, we have 〈T

(
〉 = 0, such that the spatio-temporal625

average of (3.26) reads626

〈N〉 = 〈N
(
〉 = 〈DA ,a〉 − 〈n〉 + 〈I〉. (3.28)627

If an intermediate inertial subrange of scales |r | can be defined where viscous diffusion628
and forcing are negligible, equation (3.28) reduces to 〈N

(
〉 ≈ −〈n〉 in that range. This629

theoretical conclusion (which is not part of ourDNS study) is the backbone of theKolmogorov630
(1941a,b,c) theory for high Reynolds number statistically homogeneous stationary small-631
scale turbulencewith the additional information that the part of the average interscale transfer632
rate involved in Kolmogorov’s equilibrium balance is the solenoidal interscale transfer rate633
only. This is our second KHMH result. On average, there is a cascade of turbulence energy634
from large to small scales where the rate of interscale transfer is dominated by two-point635
vortex stretching (see appendix C for the relation between the solenoidal interscale transfer636
and vortex stretching) and is equal to −〈n〉 independently of |r | over a range of scales where637
viscous diffusion and forcing are negligible.638
In this paper we concentrate on the fluctuations around the average picture described by639

the scale-by-scale equilibrium (3.28) for any Reynolds number. If we subtract the spatio-640
temporal average solenoidal KHMH equation (3.28) from the solenoidal KHMH equation641
(3.26) and use the generic notationQ′ ≡ Q−〈Q〉, we attain the fluctuating solenoidal KHMH642
equation643

AC + T( + N
′

(
= D′A ,a + DG,a − n

′ + I′ . (3.29)644

This equation governs the fluctuations of the KHMH solenoidal dynamics around its spatio-645
temporal average. Clearly, if these non-equilibrium fluctuations are large relative to their646
average values, the average picture expressed by equation (3.28) is not characteristic of the647
interscale transfer dynamics. We now study the KHMH fluctuations in statistically stationary648
periodic/homogeneous turbulence on the basis of equations (3.27) and (3.29). Concerning649
equation (3.27), note that N ′

�
= N

�
, T ′
�
= T

�
and T ′? = T?.650

We start by determining the relative fluctuation magnitudes of the spatio-temporal651
fluctuations of each term in the KHMH equations (3.27) and (3.29). These relative fluctuation652
magnitudes can emulate those of respective terms in the NSD equations under the following653
sufficient conditions: (i) the fluctuations are so intense that they dwarf averages, so that654
〈(Q ′)2〉 ≈ 〈Q2〉; (ii) the mean square of any KHMH term Q = 2Xu · Xq corresponding655
to a NSD term Xq(x, r, C) (equivalently Q = 2Xu · q corresponding to q(x, r, C)) can be656
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Figure 6: (01, 11) KHMH average square magnitudes 〈Q2〉0 and (02, 12) KHMH average
square fluctuating magnitudes 〈(Q′)2〉0 , where Q′ = Q − 〈Q〉, for the KHMH terms Q

listed above the figures and introduced in the third and fourth paragraph of 3.4. All entries
are normalised with 〈n〉0 (see equations (3.24)-(3.25)). The following pairs of KHMH
terms have overlapping magnitudes in (02, 12): AC and A2( ; AC + T( and N

(
; T
�
and

N
�
. (01, 02) 〈Re_〉C = 112, (11,12) 〈Re_〉C = 174.

approximated as657

〈Q2〉(r) ≈ 4〈|Xu |2〉〈|Xq |2〉〈cos2(\@)〉, (3.30)658

where the approximate equality results from a degree of decorrelation and \@ is the angle659

between Xq(x, r, C) (or q(x, r, C)) and Xu(x, r, C); (iii) 〈cos2(\@)〉 is not very sensitive to the660
choice of NSD term Xq (or q). Under these conditions, we get661

〈(2Xu · Xq)2〉(r)
〈(2Xu · Xw)2〉(r)

≈
〈|Xu |2〉〈|Xq |2〉〈cos2(\@)〉(r)
〈|Xu |2〉〈|Xw |2〉〈cos2(\F )〉(r)

≈ 〈|Xq |
2〉(r)

〈|Xw |2〉(r)
, (3.31)662

which means that KHMH relative fluctuation magnitudes and NSD relative fluctuation663
magnitudes are approximately identical. The first approximate equality in (3.31) follows664
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directly from (3.30) and the second approximate equality follows from hypothesis (iii) that665
cos2(\@) and cos2(\F ) are about equal.666

We test hypothesis (i) by comparing the plots in figure 6(01, 11) with those in figure 6(02,667
12). Figure 6(01, 11) shows average magnitudes of KHMH spatio-temporal fluctuations668
for terms with non-zero spatio-temporal averages. Comparing with figure 6(02, 12), we find669
〈(Q ′)2〉0 ≈ 〈Q2〉0, i.e. hypothesis (i), for all four terms plotted in figure 6(01, 11) at all length670
scales A3 considered. Note that this does not hold forD

′
A ,a and I

′ which are the only KHMH671

fluctuations such that
√
〈(Q ′)2〉0/〈n〉0 is smaller (in fact significantly smaller) than 1 at all672

scales. Figure 6 makes it also clear that the magnitudes of the fluctuations of all other KHMH673
terms (solenoidal and irrotational) are much higher than those of the turbulence dissipation674
at all scales A3 > 0.5〈_〉C , and more so for the higher of the two Reynolds numbers. For scales675
A3 > 〈_〉C , the largest average fluctuating magnitudes are those of A′2 , followed closely by676
AC and T( . Next come the magnitudes of N ′

(
andAC + T( . Thereafter follow the irrotational677

terms N
�
= T

�
(= 0.5T?) and finally the viscous, dissipative and forcing terms D′ , n ′ and678

I′ in that order. This order of fluctuations is our third KHMH result. An average description679
of the interscale turbulent energy transfer dynamics in terms of its spatio-temporal average680
cannot, therefore, be accurate. In order to characterise these dynamics, attention must be681
directed at most if not all KHMH term fluctuations, and in fact to much more than just the682
turbulence dissipation fluctuations given that they are among the weakest.683

Next, we test hypothesis (ii) by testing the validity of (3.30) and hypothesis (iii) concerning684
approximately similar cos2(\@) behaviour for different KHMH terms. In figure 7(01, 11) we685
plot ratios of right hand sides to left hand sides of equation (3.30) and see that (3.30) is not686
valid, but that it is nevertheless about 65% to 98% accurate for A3 > 〈_〉C . Note that (3.30)687
might be sufficient but that it is by no means necessary for the left-most and the right-most688
sides of (3.31) to approximately balance. In those cases where the variations between the689
ratios plotted in figure 7(01, 11) are not too large and the assumption of approximately similar690
cos2(\@) for different KHMH terms more or less holds, the left-most and the right-most sides691
of (3.31) can approximately balance.692

Incidentally, figure 7(02, 12) also shows that the angles \@ are not random but that they are693
more likely to be small rather than large in an approximately similarway for all importantNSD694
terms: cos2(\@) ranges between about 0.28 and 0.36 for all NSD terms (except the viscous695
acceleration difference and the viscous force difference) at all scales A3 . These values are696
much smaller than 0.5, the value that cos2(\@) would have taken if the angles \@ were random.697
There is therefore an alignment tendency between Xu and NSD terms which is similar for698
all the important NSD terms, thereby allowing the balance between the left-most (ratio of699
KHMH terms) and the right-most (ratio of NSD terms) sides of (3.31) to approximately hold700
as seen by comparing the plots (01)-(11) (mean square NSD terms) with the plots (02)-(12)701
(mean square KHMH terms) in figure 8. (Note that the viscous term is bounded from above,702
〈D2〉(r) 6 4〈|Xu |2 |Xaa |2〉, which indicates limited magnitudes compared to the irrotational703
and the dominant solenoidal terms because of the limited magnitude of 〈Xa2

a〉. The limited704
fluctuations of the viscous terms are clearly seen in figure 6.)705

Figure 8 does indeed confirm the close correspondence betweenNSD andKHMH statistics706
which is a significant step further from the correspondence reported earlier in this paper707
between NS and NSD statistics. We can therefore use the approximate NSD relation (3.23)708
to deduce the following approximate KHMH relation:709

AC + T( + N
′

(
≈ 0, (3.32)710

711

understood in the sense that it holds in the majority of the domain for the majority of the712
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Figure 7: Test of the assumptions (ii) and (iii) in the seventh paragraph of subsection 3.4
related to relations (3.30)-(3.31) connecting NSD and KHMH relative magnitudes.

(01,11) Test of assumption (ii) by taking the ratio of the left-hand and right-hand sides of
(3.30) for the KHMH terms Q listed above the figures. (02,12) test of assumption (iii)
used in (3.31) by comparing the behaviour of 〈cos2 (\@)〉0 for the various NSD terms
listed above the figures. The black horizontal line 0.5 corresponds to the value of

〈cos2 (\@)〉 if \@ is uniformly distributed. (01, 02) 〈Re_〉C = 112, (11, 12) 〈Re_〉C = 174.

time but that there surely exist relatively rare events within the flow where this approximate713
KHMH relation is violated.714
This approximate equation AC + T( + N

′

(
≈ 0 can be considered to be our fourth KHMH715

result. It is consistent with the order of fluctuation magnitudes in figure 8 which shows, in716
agreementwith theNSD -KHMHcorrespondence just established, that the largest fluctuating717
magnitudes are those of A2 , followed by the fluctuating magnitudes of T

(
, AC and A2(718

(A2( = T( + N(). Note though that there is a cross over at about A3 ≈ 2〈_〉C for both719
Reynolds numbers considered here between the fluctuation magnitudes of T

(
and those of720

AC and A2( which are about equal to each other in agreement with equation (3.32).721
The fluctuation magnitudes of N

(
and N

�
are both smaller than those just mentioned,722

and those of N
�
are significantly smaller than those of N

(
. Even smaller, are the fluctuation723

magnitudes ofD and I, in that order. In agreement with (3.16), our third and fourth KHMH724



22

0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

〈δ
q
2
〉a
/
〈δ
a
2 c
〉a

δac

δal

δacS

aT
S

aΠ
S

aΠ
I

δaν

δf

(a1)

0 1 2 3 4 5 6
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

δac

δal

δacS

aT
S

aΠ
S

aΠ
I

δaν

δf

(b1)

0 1 2 3

rd/〈λ〉t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

〈Q
2
〉a
/
〈A

2 c
〉a

Ac

At

AcS

TS

ΠS

ΠI

D
I

(a2)

0 1 2 3 4 5 6

rd/〈λ〉t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Ac

At

AcS

TS

ΠS

ΠI

D
I

(b2)

Figure 8: NSD and KHMH relative average square magnitudes (which should be similar
on the basis of (3.31)) for the terms listed above the figures: (01) NSD and (02) KHMH

for 〈Re_〉C = 112, (11) NSD and (12) KHMH for 〈Re_〉C = 174.

conclusions incorporate the following:725

〈A2
C 〉 ≈ 〈A2

2(
〉 � 〈T 2

? 〉 = 4〈N2
�
〉 = 4〈T 2

�
〉 = 〈A2

2�
〉 � 〈D2〉 � 〈I2〉, (3.33)726

where A2� = T� + N� .727

An additional significant observation from figure 8 which we can count as our fifth KHMH728
result is that, as A3 decreases towards about 0.5〈_〉C , the fluctuation magnitude of A2( =729
T
(
+ N

(
remains about constant but that of T

(
increases while that of N

(
decreases. (At730

scale A3 smaller than 0.5〈_〉C , the fluctuation magnitudes of both A2( and T
(
increase with731

diminishing A3 whereas those of N( remain about constant.) The convective non-linearity is732
increasingly of the spatial transport type and diminishingly of the interscale transfer type as733
the two-point separation length decreases.734

We now consider correlations between different intermediate and large scale fluctuating735
KHMH terms in light of equations (3.27) and (3.32).736
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Figure 9: Spherically averaged correlation coefficients between KHMH terms (Q1,Q2)
listed above the plots (0) and (1). They are plotted as functions of scale A3 . (0)

〈Re_〉C = 112, (1) 〈Re_〉C = 174.
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Figure 10: Scatter plots of N
′

(
and n

′
at random orientations r with A3/〈_〉C = (1.45, 3.1)

for (0, 1), fN
(
is the standard deviation of N

(
and 〈Re_〉C = 174.

4. Fluctuating KHMH dynamics in homogeneous/periodic turbulence737

4.1. Correlations738

We start this section by assessing the existence or non-existence of local (in space and739
time) equilibrium between interscale transfer and dissipation at some intermediate scales.740
In figure 9 we plot correlations between various KHMH terms. In particular, this figure741
shows that the correlation coefficient between N

′

(
and −n ′ lies well below 0.1 for all742

scales A3 > 〈_〉C . The scatter plots of these quantities in figure 10 confirm the absence743
of local relation between interscale transfer rate and dissipation rate. For example, for744
a given local/instantaneous dissipation fluctuation, the corresponding local/instantaneous745
interscale transfer rate fluctuation can be close to equally positive or negative. There is no746
local equilibrium between these quantities as they fluctuate at scales A3 > 〈_〉C . Such a747
correlation should of course not necessarily be expected. However, as A3 decreases below748
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Figure 11: Scatter plots of AC and T( at random orientations r normalised by fAC and
fT

(
, their respective standard deviations. N

(0.05
is the value of N

(
at the respective A3 for

which 5% of the samples are more negative than N
(0.05

and N
(0.95

is the value of N
(
for

which 95% of the samples are more positive than N
(0.95

. The events N
(
< N

(0.05
and

N
(
> N

(0.95
are marked in red and green respectively, while the remaining events are

marked in blue. The red line marks AC = −T( − 〈N( |N( < N(0.05
〉, where

〈N
(
|N
(
< N

(0.05
〉 is the average value of N

(
conditioned on N

(
< N

(0.05
. The green line

marks AC = −T( − 〈N( |N( > N(0.95
〉 and the blue line marks AC = −T( (with all terms

appropriately normalised with fAC and fT( ). A3/〈_〉C = (0.12, 1.45, 3.1, 5.2) for
(0, 1, 2, 3) and 〈Re_〉C = 174.

〈_〉C , the correlations between N ′
(
and either −n ′ or D′ increase up to values between749

about 0.3 and about 0.5. This increased correlation may suggest a feeble tendency towards750
local/instantaneous equilibrium between interscale transfer rate and dissipation rate at scales751
A3 < 〈_〉C . However, these scales are strongly affected by direct viscous processes and can752
therefore not be inertial range scales.753
Following the question of local/instantaneous equilibrium, we now look for lo-754

cal/instantaneous sweeping. Figure 9 shows strong anti-correlation between AC and755
T
(
, increasingly so as A3 decreases from large to small scales. Along with the fifth KHMH756

result at the end of the previous section (that the fluctuation magnitudes ofAC and T( become757
increasingly comparable as A3 decreases), this anti-correlation tendency suggests a tendency758
towards AC + T( ≈ 0 at decreasing scales in agreement with the concept of two-point759

sweeping introduced in section 3.2. In other words, the sweeping of |Xu |2 by the mainly760
large scale advection velocity (u+ + u−)/2 becomes increasingly strong with decreasing A3 .761
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Figure 12: Scatter plots of AC + T( and N
′

(
at random orientations r. The residual

−1 ≡ AC + T( + N
′

(
and the values 10.05 and 10.95 are defined analogously as for N

(0.05
and N

(0.95
in the previous figure. The events 1 < 10.05 and 1 > 10.95 are marked in red

and green respectively, while the remaining events are marked in blue. The red line marks
AC + T( = −N

′

(
− 〈1 |1 < 10.05〉, the green line AC + T( = −N

′

(
− 〈1 |1 > 10.95〉 and the

blue line AC + T( = −N
′

(
(with all terms appropriately normalised with fN

(
).

A3/〈_〉C = (0.12, 1.45, 3.1, 5.2) for (0, 1, 2, 3) and 〈Re_〉C = 174.

The scatter plots ofAC and T( in figure 11 make this local/instantaneous two-point sweeping762
tendency with decreasing A3 very evident, but also indicate that significant values of positive763
or negative N

(
can cause increasing deviations from AC + T( ≈ 0 as A3 increases. Note764

AC +T( +N( ≈ 0 as indicated by the correlation coefficients in figure 9 betweenAC +T( and765
−N

(
(which exceed 0.95 for A3 > 〈_〉C at our Reynolds numbers) and by their overlapping766

fluctuation magnitudes in figure 6(02,12). The fluctuations of N
(
increase in magnitude as767

A3 increases and so do high values of N
(
too. The scatter plots in figure 11 highlight how768

the 5% most negative N
(
events (values of N

(
for which the probability that N

(
is smaller769

than a negative value N
(0.05

is 0.05) and the 5% most positive N
(
events (values of N

(
770

for which the probability that N
(
is larger than a positive value N

(0.95
is also 0.05) cause771

significant deviations from "perfect sweeping" AC = −T( , increasingly so for increasing A3 ,772
in agreement with AC + T( + N( ≈ 0.773
The scatter plots in figure 12 show that it is only in relatively rare circumstances that774
AC + T( + N( ≈ 0 is significantly inaccurate for scales A3 > 〈_〉C . Similarly to NSD775

dynamics, AC + T( can be viewed as a Lagrangian time-rate of change of |Xu |2 moving776
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with (u+ + u−)/2. As more than average |Xu |2 is cascaded from larger to smaller scales at a777
particular location (N ′

(
< 0), AC + T( increases; and as more than average |Xu |2 is inverse778

cascaded from smaller to larger scales (N ′
(
> 0), AC + T( decreases. N ′

(
is to a large extent779

determined by aN
(
which, as we show in appendix C, is a non-local function in space of the780

vortex stretching and compression dynamics determining the two-point vorticity difference781
X8.782
A fairly complete way to summarise the details of the balanceAC + T( +N( ≈ 0 at scales783

A3 > 〈_〉C is by noting that, as A3 decreases towards 〈_〉C , (i) the fluctuation magnitude of784
T
(
tends to become comparable to that of AC while that of N

(
decreases by comparison,785

(ii) the correlation coefficient between AC and −T( increases towards 0.9, and also (iii) (not786
mentioned till now but evident in figure 9) the correlation coefficient between AC and −N(787
decreases towards values below 0.2.788

4.2. Conditional correlations789

At scales A3 below 〈_〉C , the relationAC +T(+N( ≈ 0 becomes less accurate as the correlation790
coefficient betweenAC +T( and−N( drops from 0.95 to 0.7 with decreasing A3 , reflecting the791
increase of correlation between n and −N

(
and the even higher increase towards values close792

to 0.5 of the correlation coefficient between D and N
(
. This increase of correlation appears793

to reflect the impact of relatively rare yet intense local/instantaneous occurances of interscale794
transfer rate as shown in figure 13 where we plot correlations conditional on relatively rare795
interscale events where the magnitudes of the spherically-averaged interscale transfer rates796
are higher than 95% of all interscale transfer rates of same sign (positive for backward and797
negative for forward transfer) in our overall spatio-temporal sample. This impact is highest798
at scales smaller than 〈_〉C where the correlation coefficient conditioned on intense forward799
or backward interscale transfer rate events of ±N

(
and either n or D can be as high as 0.7800

(+N
(
in the case of backward events and −N

(
in the case of forward events which causes801

significantly higher correlations betweenAC +T( and either −n orD in the case of backward802
events than in the case of forward events as seen in figure 13). However, the impact of803
such relatively rare events is also manifest at scales larger than 〈_〉C (see figure 13) where the804
conditioned correlation coefficient is significantly higher than the unconditioned one in figure805
9. Interestingly, conditioning on these relatively rare events does not change the correlation806
coefficients of AC + T( with −N ′

(
except at scales A3 smaller than 〈_〉C where, consistently807

with the increased conditioned correlations between −N
(
and D, they are smaller than the808

unconditional correlation coefficients of AC + T( with −N ′
(
, particularly at relatively rare809

forward interscale events where this conditional correlation drops to values close to 0.3 at810
scales well below 〈_〉C .811
Given that our relatively rare intense interscale transfer rates can be the seat of some812

correlation between N
(
and either −n or D particularly for A3 < 〈_〉C , and given that813

AC + T( ≈ 0 is a good approximation at scales smaller than 〈_〉C , do we have approximate814
two-point sweeping and approximate equilibrium N

(
≈ D if we condition on relatively815

rare forward or backward interscale transfer rate events? In fact the conditional correlations816
betweenAC and−T( are very high (close to and above 0.95) at all scales (see figure 13), higher817
than the corresponding unconditional correlations. However, the conditional averages ofAC818
and −T

(
shown in figure 14 are also significantly different at all scales, implying that these819

strong conditional correlations do not actually amount to two-point sweeping at relatively rare820
forward and backward events. Furthermore, if we condition on high negative/positive values821
of N

(
, the averages of both AC and T( are positive/negative (figure 14), even though these822

conditional averages do tend to 0 as A3 tends to 0. This has two implications. (i) It implies823
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Figure 13: (0) Correlation coefficients among the 5% strongest spherically averaged
backward interscale transfer events N0

(
> N0

(0.95
for KHMH terms (Q01 ,Q

0
2 ) listed on top

of the figure. (1) Correlation coefficients among the 5% strongest spherically averaged
forward interscale transfer events N0

(
< N0

(0.05
for KHMH terms (Q01 ,Q

0
2 ) listed on top of

the figure. 〈Re_〉C = 112. (Corresponding plots for 〈Re_〉C = 174 are omitted because they
are very similar.)
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Figure 14: (0) Spatio-temporal averages of KHMH terms Q0 conditioned on the 5%
strongest spherically averaged backward (0) and forward (1) interscale transfer events.
The KHMH terms are listed above figure (0) and 〈Re_〉C = 112.(Corresponding plots for

〈Re_〉C = 174 are omitted because they are very similar.)

that, even thoughAC and −T( are very well correlated at these relatively rare events,AC +T(824
fluctuates around a constant � where � > 0 if we condition the fluctuations on relatively825
rare negative N

(
but � < 0 if we condition them on relatively rare positive N

(
(� = 0 if826

we do not condition). This amounts to a systematic deviation on the average from two-point827
sweeping even though the strong correlation between the high magnitude fluctuations ofAC828
and −T

(
point at a tendency towards sweeping which is frustrated by the presence of the829

comparatively low non-zero local N
(
. Given equation (3.29), the presence of this non-zero830

constant� (clearly non-zero for all scales, and non-zero but tending towards zero as A3 tends831
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Figure 15: Spatio-temporal averages of T 0
(

across scales A3 conditioned on N0
(
being

within a certain range of N0
(
values and we consider 20 such ranges of increasing values of

N0
(
: the 5% smallest/most negative N0

(
, the 5% to 10% smallest/most negative N0

(
values

and so on until the 5% largest/most positive N0
(
values. (0) 〈Re〉C = 112, (1) 〈Re〉C = 174.

to 0 well below 〈_〉C ) means that the equilibrium N
(
≈ D for scales smaller than 〈_〉C does832

not hold either, even at scales smaller than 〈_〉C where the conditional correlation between833
N
(
andD is significant. In fact, figure 14 shows that the conditional averages ofN ′

(
are much834

larger than those of both D ′ and −n ′; they are much closer to those of AC + T( .835

(ii) The second implication of the conditional signs of T
(
is the existence of a relation836

between conditional average of solenoidal interspace transfer rate T
(
and the solenoidal837

interspace transfer rateN
(
on which the average is conditioned: when one is positive/negative838

the other is negative/positive, andwe also find that their absolutemagnitudes increase together839
(see figure 15). This is an observationwhichmayprove important in the future for both subgrid840
scale modeling and the detailed study of the very smallest scales of turbulence fluctuations.841

In conclusion, N
(
does not fluctuate with neither −n nor D. Instead, N

(
and AC + T(842

fluctuate together at all scales, in particular scales larger than 〈_〉C , and even at relatively rare843
interscale transfer events. At scales smaller than 〈_〉C , we have a general tendency towards844
two-point sweeping ifwe do not condition on particular events.At our relatively rare interscale845
transfer events this correlation tendency (now conditional) is in fact amplified but there is846
nevertheless a systematic average deviation from two-point sweeping consistent with the847
absence of equilibrium N

(
≈ D at these events. Finally, a relation exists between interspace848

and interscale transfer rates because the average interspace transfer rate conditioned on849
positive/negative values of interscale transfer rate is negative/positive. It must be stressed,850
however, that this relation does not imply an anticorrelation between interscale and interspace851
transport rates. The unconditioned correlation coefficients between −N

(
and T

(
are around852

0.2 (see figure 9), and we checked that this 0.2 correlation does not change significantly if853
we condition on relatively rare intense occurances of interscale transfer rate.854
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5. Inhomogeneity contribution to interscale transfer855

5.1. Average values and PDFs856

The decomposition N = N
�
+ N

(
helped us distinguish between the solenoidal vortex857

stretching/compression and the pressure-related aspects of the interscale transfer. As recently858
shown by Alves Portela et al. (2020), the interscale transfer rate N can also be decomposed859
in a way which brings out the fact that it has a direct inhomogeneity contribution to it. This860
last part of the present study is an examination of the decomposition introduced by Alves861
Portela et al. (2020) which is N = N� + N� where862

N� =
1
2
XD8

m

mG8
(D+:D

+
: − D

−
:D
−
: ), (5.1)863

N� = −2XD8
m

mA8
(D−:D

+
: ). (5.2)864

865

N� can be locally/instantaneously non-zero only in the presence of a local/instantaneous866
inhomogeneity. However, it averages to zero, i.e. 〈N� 〉 = 0, in periodic/statistically homoge-867
neous turbulence. Note that N = N� = N� = 0 at r = 0. With r-orientation-averaging, the868
decomposition N0 = N0

�
+ N0

�
is unique in the sense that any potentially suitable (e.g. such869

that it equals 0 at r = 0) x-gradient term added to N� vanishes after r-orientation-averaging870
(see Alves Portela et al. (2020)).871
An equivalent expression for N� which immediately reveals where the decomposition872

N = N� + N� comes from is N� = XD8
m
mA8
(D+
:
D+
:
+ D−

:
D−
:
). Given that the total interscale873

transfer rate is N = XD8
m
mA8
(XD:XD: ), the N� part of the interscale transfer concerns the874

transfered energy differences coming mostly from differences between velocity amplitudes,875
i.e. local/instantaneous inhomogeneities of “turbulence intensity” in the flow; the N�876
part of the interscale transfer concerns transfered energy differences coming mostly from877
differences between velocity orientations. Consistently with its link to local/instantaneous878
non-homogeneity, N� can be written in the form ((5.1)) making it clear that N� is zero where879
and when fluctuating velocity magnitudes are locally uniform.880
In comparing the decompositions N = N

(
+ N

�
and N = N� + N� , it is worth noting that881

N� = N�
�
given that N�

(
= 0 from its centroid gradient form (see equation (5.1)). It therefore882

follows that883

N
(
= N�

(
, (5.3)884

N
�
= N� + N�

�
. (5.4)885886

The inhomogeneity-based interscale transfer rate influences only the irrotational part of the887
total interscale transfer rate whereas N� influences both the irrotational and the solenoidal888
parts. As 〈N� 〉 = 0 and 〈N

�
〉 = 0, it follows that 〈N�

�
〉 = 0. More to the point, 〈N

(
〉 equals889

〈N�
(
〉 and so equation (3.28) reduces to890

〈N〉 = 〈N�
(
〉 = 〈DA ,a〉 − 〈n〉 + 〈I〉. (5.5)891

The part of the interscale transfer rate which is present in the average interscale trans-892
fer/cascade dynamics is in fact N�

(
.893

Given that the average interscale transfer is controlled by N�
(
= N

(
, it is worth asking894

whether the well-known negative skewness of the PDF of N0 (e.g. see Yasuda & Vassilicos895
(2018) and references therein) is also present in the PDF of N0

(
or/and whether it is spread896

across different terms of our two interscale transfer rate decompositions. In figure 16 we plot897
the PDFs of N0 and of the different r-orientation-averaged terms in the decompositions of898
N that we use. It is clear that the PDFs of N and N

(
are nearly identical whilst the PDFs899
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Figure 16: (0, 1, 2, 3, 4, 5 ) PDFs of N decompositions (N,N�
�
, N
(
, N
�
, N� , N� ) at

〈Re_〉C = 112. fN0 denotes the standard deviation of N0 and %max denotes the maximum
value of the PDF of N0 . The inhomogeneity and homogeneity interscale transfer rates N�
and N� are defined in equations (5.1)-(5.2) and the irrotational part of the homogeneity

interscale transfer rate N�
�
in equation (5.4).

of N� are different though also negatively skewed. The PDFs of N�
�
, N

�
and N� are not900

significantly skewed. In figure 17we plot the skewnes factors of the various interscale transfer901
terms as well as some other KHMH terms. The inhomogeneity interscale transfer N� has902
close to zero skewness across scales. Both N

(
and N� are negatively skewed, the former903

more so than the latter. Given equations (5.3)-(5.4) and N� = N
(
+ N�

�
, this difference904

in skewness factors is due to the irrotational part of N� which is not significantly skewed905
and reduces the skewness of N� relative to that of N

(
. All in all, the skewness towards906
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Figure 17: Skewness factors for KHMH terms Q listed on top of (0): (0) 〈Re_〉C = 112,
(1) 〈Re_〉C = 174.

forward rather than inverse interscale transfers is present in its homogeneous and solenoidal907
components but is absent in its non-homogeneous and irrotational parts.908
Figure 17 also shows that AC + T( is slightly positively skewed with flatness factors of909

approximately 0.5 at scales A3 > 〈_〉C and close to 0 or below at scales below 〈_〉C . The910
skewness factor of −N

(
with which AC + T( is very well correlated (as we have seen in the911

previous section) is about the same at scales close to the integral scale but steadily increases912
to values well above 0.5 as A decreases, reaching nearly 6.0 at scales close to 0.5〈_〉C . This is913
a concrete illustration of the fact already mentioned earlier in this paper thatAC + T( ≈ −N(914
is a very good approximation for most locations and most times but not all. Given the very915
significantly increased correlation/anti-correlation of N

(
with both D and n at relatively916

intense forward/inverse interscale transfer events and with decreasing scale A3 , it is natural917
to expect the skewness factor ofN

(
to veer towards the skewness factors ofD and −n which,918

as can be seen in figure 17, are highly negative with values between −3.0 and −7.0.919

5.2. Correlations920

We now consider the local/instantaneous relations between the various interscale transfer921
terms in terms of correlation coefficients plotted in figure 180. First, note the very strong922
correlation betweenN andN

(
and the moderate correlation betweenN andN

�
. Even though923

N and N
(
are highly correlated, we cannot ignore N

�
and cannot write N ≈ N

(
. As seen924

earlier in the paper, we cannot ignore N
�
because it is the part of the interscale transfer925

which balances the pressure term, but we have also seen that the fluctuation magnitude of926
N
(
is significantly higher than the fluctuation magnitude ofN

�
. However, even if smaller, the927

fluctuation magnitude of N
�
is not neglible. There is no correlation between N

(
and N

�
(see928

figure 18b), and so N correlates with both N
(
(strongly) and N

�
(moderately) for different929

independent reasons. N feels the influence of solenoidal vortex stretching/compression via930
N
(
and the influence of pressure fluctuations via N

�
, the former influencing N more than the931

latter.932
Figure 18a also shows significantly smaller correlations between N and N� than between933

N and N
(
. This must be due to a decorrelating effect of N�

�
as N� = N

(
+ N�

�
. The934

correlations between N and N� are even smaller at the smaller scales but at integral size935
scales these correlations are equal to those between N and N� (figure 18a).936
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Figure 18: Correlation coefficients between various N decompositions (Q1,Q2) listed on
top of the figures at 〈Re_〉C = 112. (Corresponding plots for 〈Re_〉C = 174 are omitted

because they are very similar.)

Figure 18b reveals a strong anti-correlation between N� and N� at the small scales and937
a weak one at the large scales. As the scales decrease, the interscale transfers of fluctuating938
velocity differences caused by local/instantaneous non-homogeneities and the interscale939
transfers of fluctuating velocity differences caused by orientation differences get progressively940
more anti-correlated. This anti-correlation tendency results in N� and N� having larger941
fluctuationmagnitudes thanN at smaller scales, in particular scales smaller than 〈_〉C (verified942
with our DNS data but not shown here for economy of space).943
The other significant correlations revealed in figure 18b are those betweenN� andN

(
and944

those betweenN� andN( , particularly as A3 increases from around/below 〈_〉C to the integral945
length scale. These correlations relate to the very stong correlations between N and N

(
but946

are weaker. One can imagine that N
(
correlates with N� sometimes and with N� some other947

times, but not too often with both given that N� and N� tend to be anti-correlated, and that948
this happens in a way subjected to a continuously strong correlation between N = N� + N�949
and N

(
.950

We finally consider in figure 19 the average contributions of the various N-decomposition951
terms conditional on relatively rare intense N-events. We calculate averages conditioned on952
5% most negative (forward transfer) N

(
events (values of N

(
for which the probability that953

N
(
is smaller than a negative value N

(0.05
is 0.05) and on 5% most positive N

(
(inverse954

transfer) events (values of N
(
for which the probability that N

(
is larger than a positive value955

N
(0.95

is also 0.05). All these averages tend to 0 as A3 tends to 0 below 〈_〉C . The largest such956

conditional averages are those ofN ′ followed by those ofN ′
(
. This is the forward-skewed part957

of the interscale transfer (in terms of PDFs) and it is dominant at both forward and backward958
intense interscale transfer events. The weakest such conditional averages are those of N

�
for959

all A3 and both forward and inverse extreme interscale transfer events. This is consistent with960
our observation in section 3.4 that the unconditional fluctuation magnitude of N

�
is smaller961

that the unconditional fluctuation magnitudes of N followed by those of N
(
.962

The most interesting point to notice in figure 19, however, is the difference between963
conditional averages of N ′

�
and N� when conditioned on intense forward or intense inverse964

interscale transfer events. Whilst the conditional averages of these two quantities are about965
the same at intense inverse events, they differ substantially at forward transfer events where966
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Figure 19: Average values of N decompositions conditioned on (0) intense backward
events, (1) intense forward events at 〈Re_〉C = 112. The top of (0) lists the N

decompositions. (Corresponding plots for 〈Re_〉C = 174 are omitted because they are very
similar.)

the conditional average of −N ′
�

is substantially higher that the conditional average of −N�967
except close to the integral length-scale.968

6. Conclusions969

The balance between space-time-averaged interscale energy transfer rate on the one hand970
and space-time-averaged viscous diffusion, turbulence dissipation rate and power input on971
the other does not represent in any way the actual energy transfer dynamics in statistically972
stationary homogeneous/periodic turbulence. In this paper we have studied the fluctuations of973
two-point acceleration terms in the NSD equation and their relation to the various terms of the974
KHMH equation. We now give a point-by-point summary of our results on KHMH dynamics975
(A), conditional KHMH dynamics (B) and inhomogeneity and homogeneity contributions976
to the interscale transfer rate (C).977
A1. The various corresponding terms in the NSD and KHMH equations behave similarly978

relative to each other because the two-point velocity difference has a similar tendency of979
alignment with each one of the acceleration terms of the NSD equation(see figure 8).980
A2. The terms in the two-point energy balance which fluctuate with the highest magnitudes981

areA′2 followed closely by the time-derivative termAC and the solenoidal interspace transfer982
rate T

(
. The fluctuation intensity of AC + T( is much reduced by comparison to both these983

terms (two-point sweeping) and is comparable to the fluctuation intensity of the solenoidal984
interscale transfer rate. The solenoidal interscale transfer rate, which averages according985
to equation (3.28), does not fluctuate with viscous diffusion and/or turbulence dissipation986
with which it is negligibly correlated at scales larger than 〈_〉C and rather weakly correlated987
at scales smaller than 〈_〉C . Its fluctuation magnitude is also significantly larger than that988
of DA ,a , −n and I at all scales (see figure 6 for KHMH magnitude results). Instead, the989
solenoidal interscale transfer rate fluctuates with AC + T( with which it is extremely well990
correlated at length scales larger than 〈_〉C and very significantly correlated at length scales991
smaller than 〈_〉C (see KHMH correlation results in figure 9).992
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A3. In fact, for scales larger than 〈_〉C , the relation993

AC + T( + N
′

(
≈ 0, (6.1)994

995

is a good approximation for most times and most locations in the flow.AC +T( can be viewed996

as a Lagrangian time-rate of change of |Xu |2 moving with (u++u−)/2. As more than average997
|Xu |2 is cascaded from larger to smaller scales at a particular location (N ′

(
< 0), AC + T(998

increases; and as more than average |Xu |2 is inverse cascaded from smaller to larger scales999
(N ′

(
> 0),AC +T( decreases (see section 4.1). The relatively rare space-time events which do1000

not comply with this relation are responsible for the different skewness factors of the PDFs1001
of AC + T( (small, mostly positive, skewness factor) and of N ′

(
(negative skewness factor1002

reaching increasingly large negative values with decreasing scale).1003
A4. As the length scale (i.e. two point separation length) decreases, the correlation between1004
AC and −T( increases and so do their fluctuation magnitudes relative to the fluctuation1005

magnitude of N ′
(
which reaches to be an order of magnitude smaller by comparison. In1006

this limit, the correlation between AC and −N( decreases. At length scales smaller than1007
〈_〉C the correlation between AC and −T( is extremely good indicating a tendency towards1008

two-point sweeping. However, the correlation betweenAC + T( and N
′

(
remains strong even1009

if reduced from its near perfect values at length scales larger than 〈_〉C and there remains1010
a small difference of fluctuation magnitudes between AC and T( which is mostly related to1011

the small fluctuation magnitude of N ′
(
. At the other end of the length scale range, i.e. as the1012

length scale tends towards the integral scale and larger, the fluctuation magnitudes of T
(
and1013

N
′

(
tend to become the same (the scatter plots in figures 11-12 evidence these behaviours).1014

A5. The irrotational part of the interscale transfer rate has zero spatio-temporal average but1015
is exactly equal to the irrotational part of the interspace transfer rate and half the two-point1016
pressure work term in the KHMH equation. A complete dynamic picture of the interscale1017
transfer rate needs to also take this into account, even though the fluctuation magnitudes1018
of these irrotational terms are smaller than the ones of the terms discussed in the previous1019
paragraph. In fact, the exact relation N

�
= T

�
= 1

2T? explains the significant correlation1020
between interscale transfer rate N and T? reported by Yasuda & Vassilicos (2018).1021
B1. The increase towards small correlations at length scales below 〈_〉C between N( and1022

both DA ,a and −n is accountable to the significant correlations between these terms at these1023
viscous scales when conditioned on relatively rare intenseN

(
events, both forward cascading1024

events with negative values of N
(
of high magnitude and backward cascading events with1025

positive values of N
(
of high magnitude. The choice of N

(
to identify relatively rare intense1026

events is predicated on the fact that the PDFs of N
(
are negatively skewed similarly to the1027

PDFs of N , whereas the PDFs of N
�
are not (the interscale transfer PDFs are given in figure1028

16). The solenoidal part of the interscale transfer rate derives from the integrated two-point1029
vorticity equation and includes non-local vortex stretching/compression effects at all scales1030
whereas the irrotational part of the interscale transfer rate derives from the integrated Poisson1031
equation for two-point pressure fluctuations (see appendix C for mathematical details).1032
B2. At these relatively rare intense interscale transfer rate events, the tendency for two-1033

point sweeping may appear increased because of the extremely good conditional correlation1034
between AC and −T( at all length-scales, however AC and −T( have also very significantly1035
different average values given the high absolute values ofN

(
at these relatively rare interscale1036

transfer events (see figures 13-14). This implies that there is neither local/instantaneous1037
sweeping nor local/instantaneous balance betweenN

(
andD orN

(
and −n at these relatively1038

rare intense events, a conclusion confirmed by the observation that the conditional averages1039
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and the conditional fluctuation magnitudes of N
(
are much higher than those of D and −n1040

in absolute values.1041

B3. Another property of these relatively rare intense solenoidal interscale transfer rate1042
events is that the conditional averages of solenoidal interscale and interspace transfer rates1043
have opposite signs when sampling on these events (see figure 15). There is therefore a1044
relation between them which may however be concealed by the fact that the fluctuation1045
magnitudes of the interspace transport rate are higher than those of the interscale transfer1046
rate.1047

C1. We have also considered the decomposition into homogeneous and inhomogeneous1048
interscale transfer rates recently introduced byAlves Portela et al. (2020) (see equations (5.1)-1049
(5.2)) and have studied their fluctuations in statistically stationary homogeneous turulence.1050
The PDFs of the homogeneous interscale transfer rate are skewed towards forward cascade1051
events whereas the PDFs of the inhomogeneous interscale transfer rate are not significantly1052
skewed. However, the skewness factors of the PDFs of the homogeneous interscale transfer1053
rate are not as high as those of both the full and the solenoidal interscale transfer rates.1054
Relating to this, N is highly correlated with N

(
more than with N

�
, N� and N� with all of1055

which N is, nevertheless, significantly correlated.1056

C2. There is an increasing correlation betweenN� and −N� as the length-scale decreases,1057
in particular below 〈_〉C where it reaches values above 0.6 (see figure 18). The interscale1058
transfer of velocity difference energy caused by local inhomogeneities in fluctuating velocity1059
magnitudes tends to cancel the interscale transfer of fluctuating velocity difference energy1060
caused by misalignments between the two neighboring fluctuating velocities, in particular at1061
length scales below 〈_〉C . As a result, the fluctuation magnitudes of N are smaller than those1062
of both N� and −N� .1063

C3. Finally, the decompositionN = N� +N� can be used to physically distinguish between1064
intense forward and intense inverse interscale transfer events. The averages of N ′

�
and N�1065

when conditioned on intense inverse interscale transfer events are about the same, but they1066
differ substantially when conditioned on intense forward interscale transfer events where the1067
conditional average of−N ′

�
is substantially higher that the conditional average of−N� except1068

close to the integral length-scale (see figure 19).1069

Future subgrid scale models for Large Eddy Simulations (LES) which are dynamic1070
reduced order approaches to turbulent flows and their fluctuating large scales cannot rely1071
on average cascade phenomenology describing spatio-temporal averages and should benefit1072
from detailed descriptions of the fluctuating dynamics of interscale and interspace energy1073
transfers such as the one presented in this paper. Whilst LES models based on local1074
equilibrium such as the Smagorinsky model can reproduce structure function exponents and1075
correlations between velocity increments and subgrid-scale energy transfers as shown by1076
Linkmann et al. (2018), Dairay et al. (2017) have found that the Smagorinskymodel is unable1077
to suppress small-scale spurious oscillations arising from numerical errors. Furthermore,1078
the recent review by Moser et al. (2021) makes it clear that the need for new subgrid models1079
which can faithfully operate with coarse resolutions remains unanswered. The results in the1080
present paper suggest that LES models based on local equilibrium (e.g. the Smagorinsky1081
model) cannot be fully suitable for calculating fluctuations in subgrid stresses, a weakness1082
which may become increasingly evident with coarser resolution. On the other hand, the1083
good correlations between subgrid stresses from similarity models (Bardina et al. 1980;1084
Cimarelli et al. 2019) and subgrid stresses from DNS suggest that these models might indeed1085
approximate (unawarely) at least some of the cascade dynamics reported in this paper, for1086
example the fact that AC + T( + N

′

(
≈ 0 holds in most of the flow most of the time. This1087

relation incorporates both forward and backward interscale transfers, yet a recent work by1088
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Vela-Martín (2022) argues that backscatter represents spatial fluxes and can therefore be1089
ignored. It is not yet clear how such a claim can be understood in the context of the present1090
paper’s results. Some new questions are therefore now raised concerning LES subgrid stess1091
modeling which also need to be addressed in future work.1092
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Appendix A. The Helmholtz decomposition in Fourier space1101

In this appendix we list the Helmholtz decomposition for periodic fields and note how this1102
decomposition relates to the more general solution to the Helmholtz decomposition in the1103
case of incompressible fields and fields which can be written as gradients of scalar fields.1104
Let q(x, C) be a periodic, twice continuously differentiable 3D vector field with the1105

Helmholtz decomposition q(x, C) = q� (x, C) + q( (x, C), where q� (x, C) = −∇xq(x, C),1106
q( (x, C) = ∇x ×H(x, C). The scalar and vector potentials q and H are unique within constants1107
when ∇x · q and ∇x × q are known in the domain and q is known at the boundary (Bhatia1108
et al. 2013). q(x, C) has the Fourier representation q̂(k, C), which can be decomposed into a1109

component parallel to k (the longitudinal q̂!) and transverse to k (the transverse q̂) )1110

q̂! (k, C) = k [q̂(k, C) · k]
:2 , q̂) (k, C) = q̂(k, C) − q̂! (k, C) . (A 1)1111

It can be easily shown (see e.g. Stewart (2012)) that the irrotational part of q equals its1112
longitudinal part q� = q! and that the solenoidal part of q equals its transverse part q( = q) .1113
Hence, (A 1) provides the Fourier representation of the Helmholtz decomposition of q.1114
The Helmholtz decomposition can also be written for very general boundary conditions1115

as (Sprössig 2010)1116

q�+ (x, C) =
1

4c

∫
+

3y
x − y

|x − y |3
[∇y · q(y, C)], (A 2)1117

q� � (x, C) = −
1

4c

∫
(

3(y
x − y

|x − y |3
[n̂y · q(y, C)], (A 3)1118

q(+ (x, C) = −
1

4c

∫
+

3y
x − y

|x − y |3
× [∇y × q(y, C)], (A 4)1119

q(� (x, C) =
1

4c

∫
(

3(y
x − y

|x − y |3
× [n̂y × q(y, C)] . (A 5)1120

1121

where q� = q�+ +q� �, q( = q(+ +q(� and n̂y denotes the unit surface normal at y and 3(y is1122
the differential surface element at y. For periodic vector fields q(x, C) that are incompressible1123
or that can be written as the gradient of a scalar, this solution simplifies. In the case of a field1124
q(x, C) which is incompressible∇x ·q(x, C) = 0, it can be shown that q̂(k, C) ·k = 0 for every k1125

(Pope 2000). By inspection of (A 1), it is clear that this condition yields q̂! (k, C) = 0 for every1126
k such that q̂(k, C) = q̂(k, C)) . By applying the Fourier transform to this relation and apply1127
q) (x, C) = q( (x, C) from above, we have that q(x, C) = q( (x, C) for incompressible periodic1128
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vector fields. In the case of q(x, C) = ∇xk(x, t), where k(x, C) is some scalar field, it can be1129
shown that q̂(k, C) = 8kk̂(k, C) (Pope 2000). If we insert this expression into the definition1130

of q̂! (k, C), it follows that q̂(k, C) = q̂! (k, C), which implies that q(x, C) = q� (x, C). If these1131
properties are combined with equations (A 2)-(A 5), we have that a periodic incompressible1132
vector field will have q� � = q�+ = 0 and that a periodic vector field that can be written as a1133
gradient of a scalar field has q(� = q(+ = 0.1134

Appendix B. Irrotational and solenoidal NSD tranport terms in Fourier space1135

Westart this appendixwith demonstrating that Xq� = Xq� and Xq( = Xq( for a periodic vector1136
field q (see the second pararaph of section 3.3). The field q has the Fourier representation1137

q(x, C) =
∑
k

q̂(k, C)48k ·x , (B 1)1138

with the shifted fields1139

q+(x, r, C) = q(x + r/2, C) =
∑
k

q̂(k, C)48k · (x+r/2) , (B 2)1140

q−(x, r, C) = q(x − r/2, C) =
∑
k

q̂(k, C)48k · (x−r/2) , (B 3)1141

1142

which have the Fourier coefficients1143

q̂+(k, r, C) = q̂(k, C)48k ·r/2, (B 4)1144

q̂−(k, r, C) = q̂(k, C)4−8k ·r/2. (B 5)11451146

From the definition of the irrotational part of a vector field in (A 1), it follows1147

Xq� (x, r, C) = q+� (x, r, C) − q−� (x, r, C), (B 6)1148

=
∑
k

[q̂+
�
(k, r, C) − q̂−

�
(k, r, C)]48k ·x , (B 7)1149

=
∑
k

k

:2 [q̂(k, C) · k] (4
8k ·r/2 − 4−8k ·r/2)48k ·x , (B 8)1150

=
∑
k

k

:2 [q̂(k, C) · k]28 sin(k · r/2)4
8k ·x . (B 9)1151

1152

Similarly, we can write1153

Xq(x, r, C) = q+(x, r, C) − q−(x, r, C), (B 10)1154

=
∑
k

q̂(k, C)28 sin(k · r/2)48k ·x , (B 11)1155

1156

and then calculate its irrotational centroid part1157

Xq
�
(x, r, C) =

∑
k

k

:2 [q̂(k, C) · k]28 sin(k · r/2)4
8k ·x , (B 12)1158

which shows that Xq� (x, r, C) = Xq
�
(x, r, C). By combining this with Xq = Xq� + Xq( =1159

Xq
�
+ Xq

(
, we have also Xq( (x, r, C) = Xq( (x, r, C), which is what we wanted to show.1160

Next we demonstrate that aN
�
(k, r, C) = aT

�
(x, r, C) in homogeneous/periodic turbulence.1161
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We list the following expressions for the vectors and tensors related to these two terms1162

X̂D 9 (k, r, C) = 28 sin(k · r/2)D̂ 9 (k, C), (B 13)1163 �(D+
9
+ D−

9
)/2(k, r, C) = cos(k · r/2)D̂ 9 (k, C), (B 14)1164 �mXD8
mA 9
(k, r, C) = 8: 9 cos(k · r/2)D̂8 (k, C), (B 15)1165 �mXD8

mG 9
(k, r, C) = −2: 9 sin(k · r/2)D̂8 (k, C). (B 16)1166

1167

By use of these equations, we have that the Fourier coefficients of the transport terms read1168

âT (k, r, C) =
∑

k=k
′+k′′
−2 sin(k′′ · r/2) cos(k′ · r/2)D̂ 9 (k

′): ′′9 û(k
′′), (B 17)1169

âN (k, r, C) =
∑

k=k
′+k′′
−2 sin(k′ · r/2) cos(k′′ · r/2)D̂ 9 (k

′): ′′9 û(k
′′). (B 18)1170

1171

Their irrotational parts are given per (A 1)1172

âT
�
(k, r, C) = − k

:2

∑
k=k

′+k′′
2 sin(k′′ · r/2) cos(k′ · r/2)D̂ 9 (k

′): ′′9 D̂; (k
′′): ′; , (B 19)1173

âN
�
(k, r, C) = − k

:2

∑
k=k

′+k′′
2 sin(k′ · r/2) cos(k′′ · r/2)D̂ 9 (k

′): ′′9 D̂; (k
′′): ′; . (B 20)1174

1175

If we employ the trigonometric identity sin G cos H = 1
2 [sin(G + H) + sin(G − H)], we get1176

âT
�
(k, r, C) = − k

:2

∑
k=k

′+k′′
[sin(k · r/2) + sin(k′′ · r/2 − k

′ · r/2)]D̂ 9 (k
′): ′′9 D̂; (k

′′): ′; ,

(B 21)

1177

âN
�
(k, r, C) = − k

:2

∑
k=k

′+k′′
[sin(k · r/2) − sin(k′′ · r/2 − k

′ · r/2)]D̂ 9 (k
′): ′′9 D̂; (k

′′): ′; .

(B 22)

1178

1179

Consider the term sin(k′′ · r/2 − k
′ · r/2)D̂ 9 (k

′): ′′
9
D̂; (k

′′): ′
;
. If one adds this term with the1180

wavenumber triad k
′
= k0 and k

′′
= k1 ≠ k0 with the same term with the wavenumber triad1181

k
′
= k1 and k

′′
= k0 the result is zero. Furthermore, in the case of k0 = k1 this term is zero1182

per incompressibility. This yields that this term does not contribute instantaneously in the1183
above expressions such that we attain the final result (see section 3.3 and equation (3.22))1184

âT
�
(k, r, C) = âN

�
(k, r, C) = − k

:2 sin(k · r/2)
∑

k=k
′+k′′

D̂ 9 (k
′): ′′9 D̂; (k

′′): ′; . (B 23)1185

Appendix C. Irrotational and solenoidal dynamics in non-homogeneous1186
turbulence1187

Here we deduce the generalised Tsinober equations and the irrotational and solenoidal1188
NSD and KHMH equations applicable to non-homogeneous turbulence. Consider the twice1189
continously differentiable vector field vector field q(x, C) defined on a domain + ⊆ R3 with1190
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the bounding surface (. This field can be uniquely decomposed into the irrotational and1191
solenoidal vector fields1192

q(x, C) = q� (x, C) + q( (x, C) = −∇x5(x, C) + ∇x × H(x, C), (C 1)1193

The solution to this problem under very general conditions (Sprössig 2010) is q� = q�+ +q� �1194
and q( = q(+ + q(�, where the solenoidal and irrotational volume and boundary terms are1195
given in equations (A 2)-(A 5).1196
Consider an incompressible fluid that satisfies the incompressible vorticity equation1197

∇y ×
( mu
mC
+ u · ∇yu − a∇2

yu − f
)
= 0. (C 2)1198

By comparing this equation with (A 4), it is clear that the vorticity equation can be used to1199
derive an evolution equation for the solenoidal volume parts of the NS terms. We can apply1200
the following operator to this equation1201

− 1
4c

∫
+

3y
x − y

|x − y |3
×

[
∇y ×

( mu
mC
+ (u · ∇y)u − a∇2

yu − f
) ]
= 0, (C 3)1202

and use (A 4) to rewrite this equation as1203

( mu
mC
)(+ + (u · ∇xu)(+ = (a∇2

xu)(+ + f (+ . (C 4)1204

We can in a similar manner obtain the evolution equation for the irrotational volume NS1205
terms from the Poisson equation for pressure1206

1
4c

∫
+

3y
x − y

|x − y |3
[
∇y ·

(
u · ∇yu +

1
d
∇y ? − f

) ]
= 0, (C 5)1207

which yields1208

(u · ∇xu)�+ = (−
1
d
∇x ?)�+ + f �+ , (C 6)1209

The equations (C 4) and (C 6) state that in all incompressible turbulent flows the solenoidal1210
accelerations from volume contributions balance with solenoidal forces from volume con-1211
tributions and irrotational accelerations from volume contributions balance with irrotational1212
forces from volume contributions. The former can be viewed as an integrated vorticity1213
equation which dictates a part of the solenoidal NS dynamics, while the latter equation1214
as an integrated pressure Poisson equation which dictates a part of the irrotational NS1215
dynamics. Due to the non-local character of the solenoidal and irrotational volume terms,1216
we reformulate these equations in terms of full NS term minus boundary terms. E.g., for1217
the time-derivative ( mu

mC
)(+ = mu

mC
− ( mu

mC
)� � − ( mumC )(�. The irrotational volume component1218

(see (A 2)) involves an integral of the divergence of the respective term (∇y · q(y)). Thus,1219
due to incompressibility, the time derivative and viscous terms have zero volume irrotational1220
components, ( mu

mC
)�+ = (a∇2

xu)�+ = 0. The solenoidal volume component (see (A 4))1221
involves an integral of the curl of the respective term, and as the curl of the pressure gradient1222
equals zero, this term will have a zero solenoidal volume component, (− 1

d
∇x ?)(+ = 0. We1223

rewrite the solenoidal volume terms in equation (C 4) in terms of combinations of full terms1224
and boundary terms to obtain

1225
mu

mC
+ ((u · ∇x)u)( = a∇2

xu + f (+1226

( mu
mC
)� � − (a∇2

xu)� � + (
mu

mC
)(� + ((u · ∇x)u)(� − (a∇2

xu)(� − f (� , (C 7)1227
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where the sum of the four rightmost terms on the RHS equals (− 1
d
∇x ?)(� as theNS equations1228

are satisfied at the boundary. By using this simplification and writing out all the boundary1229
terms, we arrive at

1230
mu

mC
+ ((u · ∇x)u)( = a∇2

xu + f (1231

− 1
4c

∫
(

3(y
x − y

|x − y |3
[n̂y · (

mu

mC
− a∇2

yu)] −
1

4c

∫
(

3(y
x − y

|x − y |3
× [n̂y × ∇y

1
d
?] . (C 8)1232

By rewriting the irrotational volume components in equation (C 6) in terms of the full terms1233
and the boundary terms, we have1234

((u · ∇x)u)� = −
1
d
∇x ? + f � + ((u · ∇x)u)� � − (−

1
d
∇x ?)� � − f � � − (−

1
d
∇x ?)(�, (C 9)1235

where the sum of the irrotational boundary terms equals −( mu
mC
)� � + (a∇2

xu)� � by the NS1236
equations at the boundary. If we use this relation and write out all boundary terms, we have

1237

((u · ∇x)u)� = −
1
d
∇x ? + f �1238

+ 1
4c

∫
(

3(y
x − y

|x − y |3
[n̂y · (

mu

mC
− a∇2

yu)] +
1

4c

∫
(

3(y
x − y

|x − y |3
× [n̂y × ∇y

1
d
?] . (C 10)1239

The equations (C 8) and (C 10) are generalisations of equations (3.4)-(3.5) for homo-1240
geneous/periodic turbulence and these equations are valid for all incompressible turbulent1241
flows. The difference from homogeneous/periodic turbulence is the collection of boundary1242
terms1243

X(x, C) ≡ 1
4c

∫
(

3(y
x − y

|x − y |3
[ny · (

mu

mC
− a∇2

yu)] +
1

4c

∫
(

3(y
x − y

|x − y |3
× [ny × ∇y

1
d
?],

(C 11)

1244

= −(a;)� � + (aa)� � − (a?)(�, (C 12)12451246

which yields the final expressions for the general irrotational and solenoidal NS equations1247

mu

mC
+ ((u · ∇x)u)( = a∇2

xu + f ( − X(x, C) (C 13)1248

((u · ∇x)u)� = −
1
d
∇x ? + f � + X(x, C) (C 14)1249

1250

In homogeneous/periodic turbulence all the boundary terms in X(x, C) equal zero individ-1251
ually (see the last parapgraph of A), such that we recover equations (3.4)-(3.5). In general,1252
the boundary terms will be non-zero and differ in different flows. E.g., at a solid wall the1253
boundary term from the time-derivative will vanish because of no-slip and the NS equations1254
at the wall can be used to rewrite the boundary terms as a non-local function of the pressure1255
gradient only.1256
The NSD irrotational and solenoidal equations in general turbulent flows are obtained by1257

subtracting the solenoidal and irrotational NS equations (C 13)-(C 14) at x − r/2 from the1258
same equations at x + r/21259

mXu

mC
+ Xa2( = Xaa + X f ( − XX, (C 15)1260

Xa2� = −
1
d
∇xX? + X f � + XX, (C 16)1261

1262
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The rephrasing of the irrotational and solenoidal NSD equations in terms of the interscale1263
and interspace transport terms can also be performed for non-homogeneous turbulence.1264
We derive the centroid irrotational and solenoidal NSD equations similarly as for the NS1265
irrotational and solenoidal equations by starting with the NSD equation (3.9). This yields the1266
equations1267

Xa; + aT
(
+ aN

(
= Xaa + X f ( − X, (C 17)1268

aT
�
+ aN

�
= Xa? + X f � + X, (C 18)12691270

where1271

X(x, r, C) ≡ 1
4c

∫
(

3(y
x − y

|x − y |3
[n̂y · (Xa; − Xaa)] −

1
4c

∫
(

3(y
x − y

|x − y |3
× [n̂y × Xa?],

(C 19)

1272

= −(Xa;)� � + (Xaa)� � − (Xa?)(� . (C 20)12731274

These boundary terms are individually equal to zero in homogeneous/periodic turbulence1275
for the analogue reason as for the NS dynamics. Regarding the irrotational dynamics, in1276
general, aT

�
≠ aN

�
, but the irrotational volume terms are always equal, (aT)�+ = (aN )�+1277

from equation (A 2) and1278

∇x · aN = ∇x · aT =
1
2
( mD+:
mG+
8

mD+
8

mG+
:

−
mD−

:

mG−
8

mD−
8

mG−
:

)
. (C 21)1279

The solenoidal interscale transfer term aN
(
in non-homogeneous turbulence can be written1280

as
1281

aN
(
(x, r, C) = − 1

4c

∫
+

3y
x − y

|x − y |3
× [∇y × aN (y, r, C)]+1282

1
4c

∫
(

3(y
x − y

|x − y |3
× [n̂y × aN (y, r, C)], (C 22)1283

where the surface integral is of smaller order of magnitude than the volume integral away1284
from boundaries and increasingly so with increasing 〈Re_〉C (verified in our periodic DNS).1285
Hence, for a qualitative interpretation of aN

(
, we consider aN

(
≈ aN

(+
with1286

(∇x×aN )8 = XD:
mXl8

mA:
− Xl:

2
B+
8 9
+ B−

8 9

2
−
l+
:
+ l−

:

4
XB8 9+

n8 9:

2
[
mD+

;

mG+
9

mD−
:

mG−
;

−
mD−

;

mG−
9

mD+
:

mG+
;

], (C 23)1287

where B8 9 is the strain-rate tensor and n8 9: is the Levi-Civita tensor. This set of terms1288
constitutes a part of the non-linear term in the the evolution equation for the vorticity1289
difference X8(x, r, C), i.e. vorticity at scales |r | and smaller, as ∇x × Xa2 = ∇x × (aN + aT).1290
If one contracts (C 23) with 2X8, the RHS corresponds to non-linear terms which determine1291
the evolution of the enstrophy |X8 |2 at scales smaller or comparable to |r |. We interpret the1292
first term on the RHS in (C 23) as vorticity interscale transfer. By the connection to |X8|2,1293
we interpret the second and third terms as related to the enstrophy production/destruction1294
at scales smaller or comparable to |r | due to interactions between the vorticity and strain1295
fields. These three terms justify the interpretation of aN

(
being related non-locally in space1296

to vortex stretching and compression dynamics. The last term in (C 23) appears in ∇x × aT
(+

1297
with a negative sign such that these terms cancel.1298
The exact solenoidal and irrotational KHMH equations follows from contracting equations1299
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(C 17)-(C 18) with 2Xu1300

AC + T( + N( = DA ,a + D-,a − n + �( − 2Xu · X, (C 24)1301

T
�
+ N

�
= T? + �� + 2Xu · X, (C 25)13021303

where T
�+
= N

�+
. This shows that the solenoidal and irrotational KHMH equations can be1304

extended to non-homogeneous turbulence. In contrast to homogeneous/periodic turbulence,1305
in general boundary terms couple the irrotational and solenoidal dynamics.1306
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