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In statistically stationary homogeneous incompressible turbulence, the average energy
transfer rate balance which exists at diffusion/dissipation-dominated length scales does
not reflect what actually happens locally in space and time. We use a highly resolved
Direct Numerical Simulation of forced periodic turbulence to shed some light on the actual
fluctuating dynamics which occur at these very small scales and which are rubbed off by
averaging. Even though the viscous diffusion in physical space averages to zero and fluctuates
less intensely than all other terms (except the energy input rate) in the local (in space-time)
two-point energy balance, it can fundamentally not be neglected, as neither can the local
unsteadiness and the interspace turbulence transport terms be ignored in the interscale energy
dynamics in spite of the fact that they also average to zero.
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1. Introduction
The evolution of turbulent kinetic energy in both physical and scale spaces is central to the
understanding and prediction of turbulent flows. Significant progress was made over the past
twenty years in the formulation of equations which govern this dual interscale and interspace
turbulent kinetic energy evolution: Hill (1997, 2001, 2002) derived fully general two-point
energy equations with/without Reynolds averaging which generalised the Karman-Howarth
equation to any turbulent flow (anisotropic and/or non-homogeneous) and which was first
used for the analysis of non-homogeneous turbulence data by Marati et al. (2004); Thiesset
et al. (2014) used a tripple decomposition and derived two-point energy equations with terms
which depend explicitely on large-scale coherent structures; and Larssen &Vassilicos (2023)
applied a solenoidal/irrotational decomposition and adoptedHill (2002)’s procedure to derive
solenoidal and irrotational two-point energy equations which they refer to as solenoidal and
irrotational Kármán-Howarth-Monin-Hill (KHMH) equations.
In the case of statistically homogeneous and stationary forced turbulence, the average
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aspect of this evolution collapses into a simple balance between average interscale turbulence
transfer rate and average turbulence dissipation rate in an intermediate range of scales
bounded from below by the Taylor length and from above by an integral length scale. (The
average two-point viscous diffusion rate is not negligible at scales below the Taylor length,
see Appendix B of Valente &Vassilicos (2015) and pages 86–87 in Frisch (1995)). Yasuda &
Vassilicos (2018) and Larssen &Vassilicos (2023) showed how unrepresentative this average
balance is of what actually happens locally in space and time in this intermediate range of
scales.
In the range of scales below the Taylor length, the average turbulent kinetic energy balance

does not involve only interscale turbulence transfer and turbulence dissipation but also viscous
diffusion in scale space.Whilst the turbulent energy evolution and balance in the intermediate
range is of paramount importance for reduced order models and coarse graining, it is essential
in the dissipative range for determining the smallest, viscosity-affected or dominated, local
length and time scales. In the present study we investigate how representative the average
turbulent kinetic energy balance is of what actually happens at length scales below the Taylor
length in statistically stationary forced periodic turbulence. To this end, we use the recently
developed solenoidal interscale and interspace turbulent kinetic energy equation (Larssen
& Vassilicos 2023) and a highly resolved Direct Numerical Simulation (DNS) of forced
Navier-Stokes turbulence with periodic boundary conditions in all three directions. For the
average turbulent kinetic energy balance to be representative of the local (in space and time)
turbulent kinetic energy balance, the fluctuations of each term in the local balance must be
small compared to the non-zero average terms.
The following section describes our well-resolved DNS, the solenoidal and irrotational

Kármán-Howarth-Monin-Hill (KHMH) equations, and the spatio-temporal average forms
of these equations for statistically homogeneous and stationary turbulence. Section 3
characterises the small scale dynamics globally in terms of standard devations, skewnesses,
flatness factors and correlation coefficients. In section 4 we focus on energy transfer statistics
conditioned on low and high two-point kinetic energy regions. We conclude in section 5.

2. DNS, KHMH and average KHMH equations
We use the same DNS code used by Yasuda & Vassilicos (2018) and Larssen & Vassilicos
(2023) with the exact same negative damping forcing (McComb et al. 2015), and study a
well-resolved DNS of statistically stationary turbulence that is periodic in all three directions
with size 5123 and kinematic viscosity a = 0.003. The spatial resolution fluctuates between
:max[ = 5.30 and 5.79 with standard deviation 0.11 and average :max〈[〉C = 5.50 where :max
is the highest resolved wavenumber, [ is the Kolmogorov length scale and 〈. . .〉C denotes
a time-average. The time-average Courant number is 〈�〉C = 0.19, the time-average Taylor
length-based Reynolds number is 〈'4_〉C = 81 and the ratio of the box-size 2c to the time-
average integral length scale 〈!〉C equals 5.8. The integral length scale is defined in terms
of the three-dimensional energy spectrum � (:, C) as ! (C) = (3c/4)

∫ ∞
0 :−1� (:, C)3:/ (C),

where  (C) is the kinetic energy per unit mass. The ratio of the time-average Taylor length
〈_〉C to 〈!〉C equals 2.6. Statistics are sampled over 27 turnover times ) ≡ 〈!〉C/

√
2/3〈 〉C

with )/10 time-intervals. The DNS resolution parameters are satisfactory for accurately
assessing small-scale dynamics at low to moderate Reynolds number (Donzis et al. 2008;
Yeung et al. 2018).
The KHMH equation governs the evolution of the velocity difference squared |Xu |2 across

scales, space and time; Xu = Xu(x, r, C) ≡ u+ − u− denotes the velocity difference between
fluctuating velocities u+ ≡ u(x+, C) and u− ≡ u(x−, C) at locations x+ and x− respectively,
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Figure 1: Non-zero spatio-temporal averages of surface-averaged terms of the solenoidal
KHMH equation (2.1) as functions of A3/〈_〉C . The vertical line marks the scale A3 = 〈[〉C .

with centroid x = (x+ + x−)/2 and separation vector r = x+ − x−, X f = X f (x, r, C) is the
body-force difference, X?(x, r, C) is the pressure difference and d is the density. The recently
derived solenoidal and irrotational KHMH equations for statistically homogeneous/periodic
turbulence (Larssen & Vassilicos 2023) read (see Appendix A for summary of notation and
some more information on each KHMH term)

AC + T( + N( = DG,a + DA ,a − n + I, (2.1)

N
�
= T

�
=

1
2
T?, (2.2)

where AC ≡ m ( |Xu |2)/mC is the unsteadiness, or time-derivative, term, DA ,a =

2am2( |Xu |2)/mA2
:
is the viscous diffusion in scale space, DG,a ≡ am2( |Xu |2/2)/mG2

:
is

the viscous diffusion in physical space, n ≡
[
2a(mD+

8
/mG+

:
)2 + 2a(mD−

8
/mG−

:
)2

]
is twice the

sum of the pseudo-dissipation at x+ and x−, I ≡ 2XD:X 5: is the energy input rate and
T? = −2m (XD:X?/d)/mG: is the pressure-velocity term. For convenience, we also define
the overall viscous diffusion and dissipation term D ≡ DA ,a + DG,a − n . The solenoidal
and irrotational interscale transfer terms read N

(
= 2Xu · aN

(
and N

�
= 2Xu · aN

�
, where

aN
(
and aN

�
are the solenoidal and irrotational components in centroid space x of the

momentum interscale transfer rate aN = Xu · ∇rXu. Similarly, the solenoidal and irrotational
transport terms read T

(
= 2Xu · aT

(
and T

�
= 2Xu · aT

�
, where aT

(
and aT

�
are the solenoidal

and irrotational components in centroid space of the momentum interscale transport rate
aT = 1

2 (u
+ + u−) · ∇xXu. Larssen & Vassilicos (2023) have shown that equation (2.1)

follows from the integrated two-point vorticity equation and equation (2.2) follows from
the integrated two-point Poisson equation for pressure. (More details on the Helmholtz
decomposition applied to the equation for Xu and the derivation of equations (2.1)-(2.2) can
be found in Larssen & Vassilicos (2023). The non-linear irrotational KHMH terms N

�
and

T
�
are calculated here in terms of the pressure-velocity term (2.2). The solenoidal non-linear

KHMH terms N
(
and T

(
are obtained by first calculating N = 2Xu · aN and T = 2Xu · aT

and then using N
(
= N − N

�
and T

(
= T − T

�
.)

The spatio-temporal average of the solenoidal KHMH equation for statistically stationary
and homogeneous turbulence at scales small enough for a large-scale energy input rate I to
be negligible reads

〈N
(
〉 ≈ 〈DA ,a〉 − 〈n〉, (2.3)
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where the angle brackets signify spatio-temporal averaging. As proven by Valente &
Vassilicos (2015) and confirmed by the DNS of Yasuda & Vassilicos (2018) and Larssen &
Vassilicos (2023), 〈DA ,a〉 is negligible at scales A larger than the Taylor length. This average
balance therefore simplifies to 〈N

(
〉 ≈ −〈n〉 at scales larger than the Taylor length yet much

smaller than the length-scales where the large-scale forcing acts. It is this average balance
that Larssen & Vassilicos (2023) showed to be non-representative of what actually happens
in statistically stationary periodic turbulence. Here we concentrate on scales below the Taylor
length and study how representative (2.3) is of what actually happens at these scales (locally
in space and time). Viscous diffusion is therefore central to the present study.
We calculate surface-averaged termsQ0 (x, A3 , C) = (cA2

3
)−1

∭
|r |=A3

&(x, r, C)3r for every
term& in the solenoidal KHMHequation (2.1) (in appendixBwe detail the surface-averaging
scheme and show that the average and fluctuating residuals of the surface-averaged equation
(2.1) are negligible). In figure 1 we plot the non-zero spatio-temporal averages of surface-
averaged terms. At scales |r | = A3 < 0.6〈_〉C , our DNS confirms (2.3) in the form

〈N0
(
〉 ≈ 〈D0

A ,a〉 − 〈n0〉, (2.4)

and also shows that both sides of the equation are negative and that they tend to zero
monotonically with decreasing A3 . In fact, all terms in (2.1)-(2.2) tend to zero as A3 tends to
zero except DA ,a and n . As clearly seen in figure 1, 〈n0〉 is independent of A3 in statistically
homogeneous/periodic turbulence. Note that a straightforward Taylor expansion of Xu around
r = 0 leads to limA3→0〈D0

A ,a〉 = 〈n0〉. Figure 1 confirms that 〈D0
A ,a〉 tends to 〈n〉0 as A3 tends

to zero and also shows that 〈D0
A ,a〉 is a positive monotonically decreasing function of A3 .

3. Fluctuating KHMH equation
The natural next step is to consider spatio-temporal fluctuations of the various terms in the
KHMH equation around their average. By subtracting the spatio-temporal average solenoidal
KHMH equation from the solenoidal KHMH equation we obtain

A0
C + T 0( + N

0′

(
≈ D0

G,a + D0′
A ,a − n0

′
, (3.1)

at scales A3 small enough for a large-scale energy input rate I to be negligibly small. In this
equation we use the generic notation Q0′ = Q0 − 〈Q0〉 and we have taken into account the
zero spatio-temporal averages of A0

C , T 0( and D0
G,a .

The focus of interest in this paper is the extent in which the average balance (2.4) is
representative, i.e. the extent of validity of a local balance such as N0

(
≈ D0

A ,a − n0 at the
smallest, dissipative, length-scales, that is length scales below ≈ 0.5〈_〉C where (2.4) holds
well. The Reynolds number of our DNS (〈'4_〉C = 81) may not be very high, but we are
concerned with dynamics at scales between A3 = 〈[〉C and A3 = 1

2 〈_〉C which do not change
much or change very slowly with increasing Reynolds number.
A natural starting point for addressing our question is in terms of standard deviations of the

various terms in the fluctuating solenoidal KHMH equation (3.1). In figure 2(1, 2) we plot
these terms versus A3/〈_〉C . To set the scene within a wider context, figure 2(0) shows how
related standard deviations (surface averaged averages for direct comparison with Larssen &
Vassilicos (2023) as opposed to statistics of surface averaged KHMH terms, see caption of
figure 2) vary with A3/〈_〉C over a range of scales A3 that is wider than our actual range of
interest as it is from 〈[〉C to 〈!〉C = 2.6〈_〉C . In figure 2(1) we concentrate attention on the
range 〈[〉C 6 A3 6 0.5〈_〉C (note the subtle difference between the quantities plotted in the
vertical axes of (a) and (b)). It is clear that the standard deviations of all surface-averaged
solenoidal KHMH terms except D0

A ,a and n0 tend to zero monotonically as A3 decreases
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Figure 2: (0) Plot of
√
〈(Q ′)2〉0 normalised by 〈n〉0 which does not depend on A3 . This

quantity is plotted versus A3/〈_〉C for various terms Q in the solenoidal and irrotational
KHMH equations, including Q = A2 ≡ T( + N( + T� + N� and Q = A2( ≡ T( + N(
which are not discussed in the present paper but are included to allow checking by

comparison with the corresponding plot in Larssen & Vassilicos (2023) obtained for a
different DNS case. Note that the termsAC + T( and N

(
overlap and that the terms N

�
and

T
�
also overlap. (1, 2): Plots versus A3/〈_〉C of normalised standard deviations of terms

Q0 in the surface-averaged solenoidal KHMH equation (3.1); normalised by 〈n〉0 in (1)
but normalised by |〈N0

(
〉| (which decreases with decreasing A3) in (2). (3): Pearson

correlation coefficients (obtained by averaging over space and time) of various spherically
averaged terms in the solenoidal KHMH equation versus A3/〈_〉C .

towards zero. The standard deviations of D0
A ,a and of n0 tend to the same non-zero value of

about 1.2〈n0〉 as A3 decreases towards zero. Furthermore, the standard deviation ofD0
A ,a−n0

tends to zero in a way that is similar to the way that the standard deviation of N0
(
tends to

zero as A3 tends to zero.
For a proper initial estimate of the importance of fluctuations we need to compare these

standard deviations to an appropriate non-zero spatio-temporal average. In figure 2(2) we
plot them normalised by the absolute value of the spatio-temporal average of N0

(
which also
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tends to zero as A3 tends to zero. The standard deviations of all the terms in the solenoidal
KHMH equation which tend to zero as A3 tends to zero do so at a rate that is comparable or
even marginally slower than |〈N0

(
〉|. In fact the standard deviation of N0

(
is between 2.5 and

2.8 times larger than |〈N0
(
〉| for all A3 in the range 〈[〉C to 0.5〈_〉C and the standard deviation

ofD0
A ,a − n0 is between 1.2 and 2.0 times larger than |〈N0

(
〉| in that range. These fluctuations

are clearly very significant compared to the average balance (2.4). Furthermore, whilst N0
(

and D0
A ,a − n0 are equal on average, the standard deviation of N0( is at least 40% larger than

the standard deviation of D0
A ,a − n0 in this range of scales.

Figure 2(2) also reveals that the largest fluctuations are by far those ofA0
C and T 0( at these

viscous length scales but that they cancel by the sweeping effect (discussed in some detail in
Larssen & Vassilicos (2023)) so that the fluctuations of the Lagrangian transport A0

C + T 0(
are between those of N0

(
andD0

A ,a − n0 in intensity (we use the term "Lagrangian transport"
in the sense that A0

C + T 0( can be interpreted as the rate of change of |Xu |2 in the frame
moving with the mainly large-scale velocity (u+ + u−)/2). With the exception of the energy
input rate which is insignificant at the very small scales, the smallest standard deviations are
those of D0

G,a , the viscous diffusion rate in physical space. Preempting observations made
further down in this paper concerning the importance of D0

G,a , we note that the standard
deviations of N0

(
andD0 ≡ D0

G,a +D0
A ,a − n0 tend to equal each other as A3 approaches 〈[〉C

whereas the standard deviation of D0
A ,a − n0 remains well below that of N0

(
.

The results of figure 2 are a first indication that the average balance (2.4) may not be
characteristic of reality at the small scales where it holds. Not only are the standard deviations
of N0

(
and D0

A ,a − n0 much larger than their average values at scales A3 under 0.5〈_〉C , they
are also the result of extremely intermittent fluctuations as evidenced by their flatness factors
which are well over 40 at these scales (see figure 3(1)). In fact, all the terms in the solenoidal
KHMHequation aremuchmore intermittent than n0 andD0

A ,a at these scales, evenD0
A ,a−n0.

Furthermore, N0
(
and D0

A ,a − n0 have significantly different skewnesses as shown in figure
3(0). With very intermittent fluctuations which are different in terms of standard deviations
and skewnesses, it is likely that N0

(
and D0

A ,a − n0 are not typically equal. In fact, it is
interesting to note the role of the viscous diffusion in physical space once again, given that
the skewness of D0 is equal to the skewness of N0

(
at scales A3 between 〈[〉C and 0.25〈_〉C .

The fluctuations ofN0
(
andD0

A ,a−n0maybe extremely intermittent and differ inmagnitude,
but be nevertheless correlated. The Pearson correlation coefficient of N0

(
and D0

A ,a − n0 is
about 0.45 at A3 = 0.5〈_〉C and increases to about 0.72 at A3 = 〈[〉C (see figure 2(3)). This
is a significant correlation but the correlation curve between N0

(
and D0 in figure 2(3)

is about the same. It is important to note that two signals can be highly correlated yet be
different nearly everywhere/everytime. Even so, the near-perfect correlation seen in figure
2(3) between D0

A ,a and n0 at scales close to 〈[〉C reflects very similar D0
A ,a and n0 spatio-

temporal fields at A3 close to 〈[〉C (the standard deviation of 1 − D0
A ,a/n0 at A3 = 〈[〉C is

0.025). This is not inconsistent with the standard deviation and average ofD0
A ,a − n0 tending

to 0 more or less together as A3 decreases towards zero and with the skewness and flatness
factors of the two fields being about the same at dissipative scales.
Given the high but far from perfect correlation betweenN0

(
andD0

A ,a−n0 at scales close to
〈[〉C it may still not be a priori inconceivable that the average balance (2.4) might be, to some
degree, a fairly representative balance even though the two spatio-temporal fluctuations of
N0
(
and D0

A ,a − n0 differ significantly in fluctuation intensity and skewness. In the following
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Figure 3: Skewnesses (0) and flatness factors (1) of terms in the solenoidal KHMH
equation across normalised scales A3/〈_〉C . A point not made in the main text is that the
only terms with increasing skewness as A3 decreases towards 〈[〉C are D0A ,a and n0 .

section we investigate the degree of correspondence betweenN0
(
andD0

A ,a − n0 more closely
by conditioning on low and high two-point kinetic energy ( |Xu |2)0 for various small scales
A3 in the dissipative range below 〈_〉C/2 as these small-scale two-point energies reflect the
smooth or near-singular local nature of the velocity field. Indeed, multifractal theories of
turbulence (see Frisch (1995)) associate local dissipative scales to varying levels of local
near-singularities.
Given the results on N0

(
andD0 in figures 2 and 3 (same standard deviation and skewness

at scales close to 〈[〉C , similar flatness factors, and correlations comparable to those of N0
(

and D0
A ,a − n0) we start by investigating the relation between N0

(
and D0.

4. Small-scale dynamics in low and high energy regions
We define 〈Q|(|Xu |2)0〉 to be the average value of Q conditionally on ( |Xu |2)0 being within
a certain range of ( |Xu |2)0 values and we consider 20 such ranges of increasing values of
( |Xu |2)0: the 5% smallest ( |Xu |2)0 values, the 5% to 10% smallest ( |Xu |2)0 values, and
so on till the 95% to 100% smallest ( |Xu |2)0 values which are actually the 5% highest
values of ( |Xu |2)0 (given that the 100% smallest ( |Xu |2)0 values are by definition the
totality of all values of ( |Xu |2)0 for a certain A3). In figure 4 we plot (0) 〈D0 | ( |Xu |2)0〉, (1)
〈D0

A ,a − n0 | ( |Xu |2)0〉 and (2) 〈D0
G,a | ( |Xu |2)0〉 versus 〈N0( | ( |Xu |

2)0〉 for increasing ( |Xu |2)0
and for scales A3 between 〈[〉C and 〈_〉C . We checked that the results in this figure and in
figure 7 are insensitive to the number of ( |Xu |2)0 ranges considered as we also tried 10 and
100 ranges with very similar results.
Firstly, figure 4 shows that 〈D0 | ( |Xu |2)0〉, 〈D0

A ,a − n0 | ( |Xu |2)0〉, 〈D0
G,a | ( |Xu |2)0〉 and

〈N0
(
| ( |Xu |2)0〉 are all close to zero for the range of smallest values of ( |Xu |2)0, i.e. the

5% smallest ( |Xu |2)0 values. As the ( |Xu |2)0 values increase, the equality 〈N0
(
| ( |Xu |2)0〉 ≈

〈D0 | ( |Xu |2)0〉 appears clearly (see figure 4(0)) for all A3 in the range 〈[〉C 6 A3 6 0.6〈_〉C
whereas 〈N0

(
| ( |Xu |2)0〉 ≈ 〈D0

A ,a−n0 | ( |Xu |2)0〉 does not (see figure 4(1)). This behaviour has
its root cause in the viscous diffusion in physical space which is non-zero in regions with high
values of ( |Xu |2)0. Interestingly, 〈D0

G,a | ( |Xu |2)0〉 is increasingly negative as ( |Xu |2)0 values
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paragraph of section 4). All plotted quantities are normalised by |〈N0
(
〉| and are plotted for

different values of A3 . The legend at the top of (a) gives the values of A3/〈_〉C which
correspond to different coloured symbols (note 〈[〉C ≈ 0.06〈_〉C ). The average quantities
plotted are conditional on 20 different ranges of ( |Xu |2)0 values as described in the first
paragraph of section 4 and ranges with increasing values of ( |Xu |2)0 for each A3 are from
right to left in (0)-(2) (see the arrow indicating increasing local two-point energy ( |Xu |2)0

in (0)).

increase (see figure 4(2)), which is also the case for all other three quantities plotted in figure
4. In fact both 〈D0

G,a | ( |Xu |2)0〉 and 〈D0
A ,a − n0 | ( |Xu |2)0〉 vary linearly with 〈N0

(
| ( |Xu |2)0〉

if the ( |Xu |2)0 values are not too small, and these two linear dependencies sum up to give
〈N0
(
| ( |Xu |2)0〉 ≈ 〈D0 | ( |Xu |2)0〉.

We conclude that (i) with increasing ( |Xu |2)0 values, the average balance (2.4) is
increasingly not representative of the conditionally averaged energy transfer balance at
viscosity affected/dominated length scales and that (ii) the viscous diffusion in physical
space cannot be neglected in regions of significant local inhomogeneity where ( |Xu |2)0 is
high. In such regions the viscous diffusion in physical space contributes to the loss of kinetic
energy, though, on average, less than D0

A ,a − n0 which is also negative on average but with
higher magnitudes (see figure 4(1, 2)).
The third conclusion is quantitative, namely that

〈N0
(
| ( |Xu |2)0〉 ≈ 〈D0 | ( |Xu |2)0〉 (4.1)

holds for all ranges of high enough ( |Xu |2)0 values in the range of scales 〈[〉C 6 A3 6 0.6〈_〉C
whereas 〈N0

(
| ( |Xu |2)0〉 = 〈D0

A ,a − n0 | ( |Xu |2)0〉 does not. This raises the question whether
N0
(
≈ D0 happens more often than N0

(
≈ D0

A ,a − n0 at these very small scales.



9

−10 −5 0 5 10
10−3

10−2

10−1

100
P
/
P
m

a
x

LE

e−1.00|z|

HE

e−1.81|z|

VHE

e−1.67|z|

(a)

−10 −5 0 5 10 15
10−3

10−2

10−1

100
LE

e−2.52
√

z

HE

e−1.79|z|

VHE

e−1.64|z|

(b)

−10 −5 0 5 10
10−3

10−2

10−1

100

P
/
P
m

a
x

LE

e−1.03|z|

HE

e−1.46|z|

VHE

e−1.36|z|

(c)

−10 −5 0 5 10 15
10−3

10−2

10−1

100
LE

e−2.66
√

z

HE

e−1.52|z|

VHE

e−1.38|z|

(d)

−10 −5 0 5 10

z =
(
Π a

S
−Da

)
/σ(Π a

S
| (|δu|2)a)

10−3

10−2

10−1

100

P
/
P
m

a
x

LE

e−1.09|z|

HE

e−1.32|z|

VHE

e−1.31|z|

(e)

−10 −5 0 5 10 15

z =
(
Π a

S
−Da

r,ν + ǫa
)
/σ(Π a

S
| (|δu|2)a)

10−3

10−2

10−1

100
LE

e−2.90
√

z

HE

e−1.33|z|

VHE

e−1.34|z|

(f)

Figure 5: Probability density functions of N0
(
− D0 (left) and N0

(
− D0A ,a + n0 (right)

conditional on low energy (LE) events (the events with the 5% smallest ( |Xu |2)0 values at
scale A3), high energy (HE) events (the events with the 5% highest ( |Xu |2)0 values at

scale A3) and very high energy (VHE) events (the events with the 0.5% highest ( |Xu |2)0
values at scale A3): (0, 1) A3 = 〈[〉C , (2, 3) A3 = 0.24〈_〉C , (4, 5 ) A3 = 0.48〈_〉C ). %max
and f(N0

(
| ( |Xu |2)0) denote, respetively, PDF maximum value and standard deviation of

N0
(
conditional on the particular range of ( |Xu |2)0 values considered. The dashed lines

show exponential or stretched exponential fits of the PDFs calculated with least squares.

4.1. Probability Density Functions
To answer this question we plot in figure 5 Probability Density Functions (PDF) of N0

(
−D0

andN0
(
−(D0

A ,a−n0) conditional on ( |Xu |2)0. (This differs fromDebue et al. (2021)who study
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separate PDFs of interscale transfer rate (without solenoidal/irrotational decomposition) on
the one hand and dissipation/viscous diffusion in scale space on the other.) The red curves are
PDFs conditional on the 5% smallest values of ( |Xu |2)0 whereas the blue and green curves
are, respectively, PDFs conditional on the 5% and 0.5% highest values of ( |Xu |2)0 for a given
length scale A3 . The top plots (0) and (1) are for A3 = 〈[〉C , the middle plots (2) and (3) are for
A3 = 0.24〈_〉C and the bottom plots (4) and ( 5 ) are for A3 = 0.48〈_〉C . The first observation to
make is that, if normalised by their maximum PDF value %max and the standard deviation of
N0
(
for high ( |Xu |2)0 events, the high ( |Xu |2)0 PDFs of N0

(
− D0 (blue and green curves in

the left plots of figure 5) are approximately symmetric with respect to positive and negative
values and become decreasingly heavy tailed with decreasing A3 . Irrespective of the value
of A3 in the range 〈[〉C 6 A3 6 0.5〈_〉C , the most likely value of N0

(
− D0 is zero at the

5% and 0.5% highest ( |Xu |2)0 events. The most likely value of N0
(
− D0 is also zero at the

5% lowest ( |Xu |2)0 events. However, the PDF of N0
(
− D0 conditional on these 5% lowest

( |Xu |2)0 events and normalised by %max and the standard deviation of N0
(
for these events

(red curves in the left plots of figure 5) becomes increasingly heavy tailed with decreasing
A3 in the range 〈[〉C 6 A3 6 0.5〈_〉C (but remains approximately symmetric with respect to
positive and negative values).

UnlikeN0
(
−D0, the most likely value ofN0

(
−(D0

A ,a−n0) is not zero, see figure 5(1, 3, 5 ).
It is non-zero and positive if conditioned on the 5% lowest ( |Xu |2)0 events, and non-zero
and negative if conditioned on either the 5% or the 0.5% highest ( |Xu |2)0 events. However,
similarly toN0

(
−D0, the high ( |Xu |2)0 PDFs ofN0

(
− (D0

A ,a − n0) (blue and green curves in
the right plots of figure 5) normalised by their maximum PDF value %max and the standard
deviation of N0

(
for high ( |Xu |2)0 events, are decreasingly heavy tailed for decreasing A3

but are shifted towards negative values by comparison to the PDFs of N0
(
− D0. The PDF

of N0
(
− (D0

A ,a − n0) conditional on the 5% lowest ( |Xu |2)0 events and normalised by %max

and the standard deviation of N0
(
for these events (red curves in the right plots of figure 5) is

different for different values of A3 in the range 〈[〉C 6 A3 6 0.5〈_〉C . It is very significantly
asymmetric with a vast bias towards positive values and becomes increasingly heavy tailed
on its positive side as A3 decreases within this range, but not on both positive and negative
sides as in the case of N0

(
−D0. As the difference betweenD0 andD0

A ,a − n∗0 equalsD0
G,a ,

it follows from figure 5 that the strong bias towards positive N0
(
− (D0

A ,a − n∗0) events in
low ( |Xu |2)0 regions is balanced by large positiveD0

G,a events in such regions. Hence, there
are tendencies for physical space viscous diffusion D0

G,a to quickly transport ( |Xu |2)0 from
slightly higher ( |Xu |2)0 regions to slightly lower ( |Xu |2)0 regions.

The three PDFs of N0
(
− D0 in figure 5(0, 2, 4) are plotted in log-lin axes to make it clear

that their tails are exponential tails over a wide range of N0
(
− D0 values. The coefficient

of these exponentials increases with decreasing A3 (decreasingly heavy tailed) for the high
( |Xu |2)0 PDFs (blue and green curves) but decreases with decreasing A3 (increasingly heavy
tailed) for the low ( |Xu |2)0 PDF (red curves). Exponential tails are a sign of intermittency
and mean that there is much more than a normal number of events in space and time
whith large and very large deviations from N0

(
≈ D0. Of course, the most likely occurance

remains N0
(
− D0 = 0, but it is in fact not so likely. In table 1 we report the probability

of finding 2
3D

0 < N0
(
< 4

3D
0 which is a very generous upper bound on the probability

to find N0
(
≈ D0: it increases as A3 decreases from 0.5〈_〉C to 〈[〉C and it also increases
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( |Xu |)0 -0.005 -0.05 -0.1 +0.1 +0.05 +0.005
〈[〉C (9.7, 9.2) (10.4, 12.7) (10.9, 13.5) (31.4, 25.3) (34.2, 25.4) (41.0, 24.3)
0.24〈_〉C (9.1, 10.4) (10.1, 12.8) (10.5, 13.7) (27.5, 23.7) (30.1, 24.4) (37.9, 24.6)
0.48〈_〉C (8.9, 11.9) (9.7, 13.5) (10.0, 14.1) (21.8, 19.5) (23.6, 20.1) (27.5, 20.9)

Table 1: Share of events (in %) with 2
3D

0 < N0
(
< 4

3D
0 (left entries in the parentheses)

and share of events with 2
3 (D

0
A ,a − n0) < N0

(
< 4

3 (D
0
A ,a − n0) (right entries in the

parentheses) for various ( |Xu |)0 conditionings. Each row corresponds to one scale A3
given in the leftmost column and the top row denotes the ( |Xu |)0 conditioning. E.g. −0.05
denotes the 5% of the events with the lowest ( |Xu |)0 and +0.1 denotes the 10% of the

events with the highest ( |Xu |)0 .

as we condition on progressively higher ( |Xu |2)0. This probability ranges from 8.9% if we
condition on the 0.5% lowest ( |Xu |2)0 and focus on A3 = 0.48〈_〉C , to 41% if we condition
on the 0.5% highest ( |Xu |2)0 and focus on A3 = 〈[〉C . It is therefore generally unlikely to
find N0

(
≈ D0 in the turbulence except at the very highest ( |Xu |2)0 with A3 = 〈[〉C . This

conclusion is consistent with our observations in figures 2 and 3 that N0
(
and D0 tend to

have same standard deviations and skewnesses as well as similar flatness factors as A3 gets
close to 〈[〉C .
Similarly to N0

(
− D0, the two PDFs of N0

(
− (D0

A ,a − n0) in figure 5(1, 3, 5 ) which are
conditional on the 5% and 0.5% highest ( |Xu |2)0 (blue and green curves) have exponential
tails which depend on A3 in a similar way. Unlike N0

(
− D0 however, the PDF of N0

(
−

(D0
A ,a − n0) conditional on the 5% lowest ( |Xu |2)0 (red curves in figure 5(1, 3, 5 )) has an

exponential tail on its negative side but a stretched exponential tail on its positive side. Whilst
the exponential tail on the negative side does not get wider and varies rather weakly with
decreasing A3 (similarly to the PDFs that are conditional to the 5%and 0.5%highest ( |Xu |2)0),
the stretched exponential side widens quite appreciably as A3 decreases from 0.5〈_〉C to 〈[〉C .
In low ( |Xu |2)0 regions, the intermittency in the fluctuations ofN0

(
− (D0

A ,a − n0) is therefore
much more present and intense with positive rather than negative values ofN0

(
− (D0

A ,a−n0):
there are disproportionately many events in such regions whith particularly large positive
deviations from N0

(
− (D0

A ,a − n0) ≈ 0.
As already mentioned, however, even the most likely value of N0

(
− (D0

A ,a − n0) is in fact
not zero; when conditioning on the 5% lowest ( |Xu |2)0 it is positive and when conditioning
on the 5% or 0.5% highest ( |Xu |2)0 it is negative. As we report in table 1, it is not even
particularly likely to find N0

(
≈ (D0

A ,a − n0). In fact, it is significantly less likely than finding
N0
(
≈ D0. The probability of finding 2

3 (D
0
A ,a − n0) < N0( <

4
3 (D

0
A ,a − n0) ranges from 9.2%

to 25.4% whereas the probability of finding 2
3D

0 < N0
(
< 4

3D
0 ranges from 8.9% to 41.0%

(table 1). Unlike the latter which increases as we condition on progressively higher ( |Xu |2)0,
the probability of finding 2

3 (D
0
A ,a − n0) < N0( <

4
3 (D

0
A ,a − n0) levels off (see table 1). When

we condition on increasing values of ( |Xu |2)0 it becomes increasingly difficult to neglect the
viscous diffusion in physical space as already noted in the paragraph before equation (4.1).
We have therefore reached the conclusion that (2.4) is in no way representative of what

actually happens at dissipative scales between 〈[〉C and 0.5〈_〉C where (2.4) holds. The local
balance N0

(
≈ (D0

A ,a − n0) is spatio-temporally rather rare. It is only slightly less rare than
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Figure 6: (0): Scatter plot of D0A ,a − n0 and N0
(
at A3 = 〈[〉C conditioned on the 5% least

energetic events (refered to as LE in figure 5). (1): Scatter plot of D0A ,a − n0 and N0
(
at

A3 = 〈[〉C conditioned on the 5% most energetic events (refered to as HE in figure 5). The
black dotted lines show N0

(
= D0A ,a − n0 and the data points are colored with the ratio

|N0
(
|/|D0A ,a − n0 |. D0A ,a − n0 and N0

(
are normalised with the standard deviation of N0

(
conditioned on LE events (0) and HE events (1).

the local balance N0
(
≈ D0 at the lower to moderate levels of ( |Xu |2)0 but significantly

more rare than the local balance N0
(
≈ D0 at the higher levels of ( |Xu |2)0. It becomes

increasingly unlikely for the viscous diffusion in physical space D0
G,a to be negligible as

( |Xu |2)0 increases. However, in reaching this conclusion we also found that the probabililty
of finding N0

(
≈ D0 is not overwhelming either, and that the PDF of N0

(
− (D0

A ,a − n0)
conditional on the 5% lowest ( |Xu |2)0 is overwhelmingly weighted towards positive values
of N0

(
− (D0

A ,a − n0). We now address these two remaining issues starting from the second
one.

4.2. Correlations
In figure 6(0, 1) we report two scatter plots of D0

A ,a − n0 and N0
(
at A3 = 〈[〉C , one (figure

6(0)) conditioned on the 5% lowest values of ( |Xu |2)0 for A3 = 〈[〉C and the other (figure
6(1)) conditioned on the 5% highest values of ( |Xu |2)0 for A3 = 〈[〉C . The black dotted line
in both scatter plots is the line where N0

(
= D0

A ,a − n0. Whilst it is very rare to find positive
values of D0

A ,a − n0 in both scatter plots (the probability to find D0
A ,a > 0 is in fact only

1.2% for A3 = 〈[〉C ) , the two scatter plots are otherwise very different. For the 5% smallest
values of ( |Xu |2)0, the scatter plot is approximately symmetric with respect to N0

(
= 0, i.e.

it looks about the same on the positive and negative sides of N0
(
. Given that D0

A ,a − n0 is
overwhelmingly negative,N0

(
− (D0

A ,a − n0) is overwhelmingly positive when N0
(
is positive

which accounts for about half of all cases given the approximate symmetry of the scatter plot
in figure 6(0). The other approximate half of all cases corresponds to negative values of N0

(
in which case the scatter plot in figure 6(0) suggests thatD0

A ,a − n0 < N0( < 0 happens more
often than N0

(
< D0

A ,a − n0 < 0, thereby also favouring positive values of N0
(
− (D0

A ,a − n0)
though not as much as when N0

(
is positive. All in all, from the scatter plot in figure 6(0) one

can see why the PDFs of N0
(
− (D0

A ,a − n0) conditioned on the 5% lowest values of ( |Xu |2)0
(red curves in figure 5(1,3, 5 )) are so much skewed towards positive values.
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Figure 7: (a) Conditional standard deviations of various surface-averaged KHMH terms
Q0 for A3 = 〈[〉C and (b) conditional Pearson correlation coefficients of pairs of

surface-averaged KHMH terms Q01 and Q02 for A3 = 〈[〉C . These standard deviations and
correlation coefficients are calculated from spatio-temporal statistics conditioned on

various ranges of ( |Xu |2)0 at A3 = 〈[〉C . The conditioning is identical to that in figure 4:
we consider 20 ranges of ( |Xu |2)0 values and the horizontal axes display the average
( |Xu |2)0 values within each ( |Xu |2)0 range normalised by the spatio-temporally averaged
small-scale energy 〈|Xu |2〉0 . Increasing values of ( |Xu |2)0 are therefore from left to right

on the horizontal axes.

The situation is fundamentally different when we condition on the 5% highest values of
( |Xu |2)0 as the scatter plot of of D0

A ,a − n0 and N0
(
is no longer symmetric with respect to

N0
(
= 0, see figure 6(1): in fact it is very much skewed towards negative values of N0

(
. It is

therefore impossible to argue thatN0
(
−(D0

A ,a−n0) is more often positive than negative in this
case, and the PDFs ofN0

(
− (D0

A ,a − n0) conditioned on the 5% highest values of ( |Xu |2)0 are
indeed symmetric around their maximum at zero (see blue curve in figure 5(1,3, 5 )). Figure
10 in appendix B shows that the conditional scatter plots in figure 6(0, 1) are similar across
dissipative scales from A3 ≈ 〈[〉C to A3 ≈ 0.5〈_〉C with the scatter plots being symmetric with
respect to N0

(
= 0 when we condition on low ( |Xu |2)0 values and skewed towards negative

values of N0
(
when we condition on high ( |Xu |2)0 values.

We now address the last remaining question: given that N0
(
− (D0

A ,a − n0) is not typically
zero even if on average it is, and given that N0

(
− D0 is also not so often zero except at the

very smallest scales and the regions of highest ( |Xu |2)0, is there a typical energy transfer
balance at small dissipative length scales? To shed some light on this question we return to
the general solenoidal energy balance (3.1) and plot in figure 7(0) standard deviations of
various terms in this equation conditioned on various ranges of ( |Xu |2)0 values. We consider
the same 20 ranges of ( |Xu |2)0 values that we considered for figure 4 (see this section’s first
paragraph), and in the horizontal axes of the two plots in figure 7 we mark each one of these
ranges by its average ( |Xu |2)0 value normalised by (〈|Xu |2〉0. We do this for A3 = 〈[〉C in
figure 7 and in figure 11 in appendix C we complete the picture with similar results for some
other values of A3 in the dissipative range between 〈[〉C and 0.5〈_〉C .
Figure 7(0) shows that the standard deviations of N0

(
andD0 are quite close to each other
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for all ( |Xu |2)0 levels but that the standard deviation ofN0
(
is nevertheless consistently higher

than that ofD0. The only other term inA0
C +T 0( +N

0

(
= D0 isA0

C +T 0( , and the fluctuations
ofA0

C + T 0( are never negligible, in fact they are significantly more intense than those of N0
(

and D0 at all ( |Xu |2)0 levels except the highest ( |Xu |2)0 considered here. Except perhaps at
specific spatio-temporal instances, it is in general not possible to neglect what is effectively
the Lagrangian transport termA0

C +T 0( (see Larssen &Vassilicos (2023)) at these dissipative
length scales.
Figure 7(0) also shows that the standard deviations ofN0

(
andD0

A ,a−n0 differ significantly
at all ( |Xu |2)0 levels except intermediate ones. Furthermore, the standard deviations of
D0
A ,a − n0 andD0

G,a are very close to each other, the standard deviation ofD0
A ,a − n0 being in

fact slightly larger than the standard deviation of D0
G,a for all ( |Xu |2)0 levels. Both standard

deviations decrease with increasing ( |Xu |2)0 whilst the standard deviation of their sum D0

remains approximately constant by comparison. This suggests an anti-correlation between
D0
A ,a − n0 and D0

G,a where/when ( |Xu |2)0 is low and a synergy/correlation between these
two terms where/when ( |Xu |2)0 is high. The conditional correlation coefficient between
−D0

G,a and D0
A ,a − n0 in figure 7(1) confirms this suggestion. It monotonically decreases

with increasing ( |Xu |2)0 from 0.9 at the lowest ( |Xu |2)0 level to nearly −0.4 at the highest.
Conditional correlations of various other pairs of terms appearing in (3.1) are also plotted

in figure 7(1). At the low to moderate ( |Xu |2)0 levels there is a correlation of about 0.7
betweenA0

C +T 0( and −N0
(
and also betweenA0

C +T 0( andD0. However, there is effectively
no correlation at these ( |Xu |2)0 levels between N0

(
and any of the diffusion/dissipation terms

D0, D0
G,a and D0

A ,a − n0. The significant correlations which exist between A0
C + T 0( and

−N0
(
on the one hand and between A0

C + T 0( and D0 on the other must therefore arise
from different spatio-temporal instances given the absence of correlation between N0

(
and

D0. The picture suggested by A0
C + T 0( + N

0

(
= D0 and by these presences and absences

of correlations conditioned on low to moderate ( |Xu |2)0 levels is as follows: as turbulence
energy at scale A3 = 〈[〉C is transported along a Lagrangian path, part of it may at one time
be transfered to another scale and part of it may at another time be dissipated and diffused
by viscosity, but very rarely will both significantly happen at the same time. There is indeed
little spatio-temporal coincidence between interscale transfer rate and diffusion/dissipation at
these ( |Xu |2)0 levels. To complete the picture, viscous diffusion in space acts against viscous
diffusion/dissipation D0

A ,a − n0 at low to moderate ( |Xu |2)0 levels: whilst D0
A ,a − n0 most

typically removes energy,D0
G,a counteracts by adding energy at that scale from neighboring

physical space. As shown in appendix C this picture is essentially true for all scales A3
between 〈[〉C and 0.5〈_〉C . With increasing A3 the standard deviations of viscous effects D0

decrease relative to those of N
(
and A0

C + T 0( . This leads to weaker correlations between
D0 and N0

(
and stronger correlations between A0

C + T 0( and −N0
(
.

The picture (described now for A3 = 〈[〉C but confirmed in appendix C for other A3 <
0.5〈_〉C ) changes dramatically as we reach the 5% highest ( |Xu |2)0 levels, i.e levels between
about 30 to 60 times (〈|Xu |2〉0. Firstly, at such high local kinetic energy levels,D0

A ,a − n0 and
D0
G,a acquire some significant tendency to act together (correlation coefficient of about 0.4)

to remove kinetic energy from scale A3 = 〈[〉C . This is a remarkable reversal in the role played
by viscous diffusion in physical space. Secondly, the correlations ofA0

C + T 0( with −N0
(
and

withD0 drop but remain significant (correlation coefficients of about 0.4) whilstN0
(
acquires

substantial correlation with the diffusion/dissipation terms: its correlation coefficients with
D0 and with D0

A ,a − n0 rise to about 0.7, and its correlation coefficient with D0
G,a rises too
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but not so much (it reaches about 0.4). At these particularly high ( |Xu |2)0 levels and very
small scales 〈[〉C , the strongest correlation is therefore the one between N0

(
and D0 but it is

not so strong that we may neglect the Lagrangian transport termA0
C +T 0( , i.e. the remaining

term in the full balance A0
C + T 0( + N

0

(
= D0, which is also significantly correlated with

both −N0
(
and D0. We chose to focus on the correlation between N0

(
and D0 rather than

between N0
(
and D0

A ,a − n0 even though they have same correlation coefficients because we
have seen that, unlike N0

(
andD0

A ,a − n0, N0( andD0 have an increasing statistical tendency
to get close to each other with increasing ( |Xu |2)0 levels and decreasing length scale (see
figure 4, table 1 and figure 11). However, this does not happen without some correlation with
Lagrangian transport.
Appendix C and figure 11 show that as we consider larger scales, the viscous terms

become gradually less important locally and the dynamics tend to the approximate local (in
space-time) balance reported in Larssen & Vassilicos (2023) A0

C + T 0( ≈ −N
0′

(
(see also

the unconditional correlation coefficients in figure 2(3)). At A3 = 0.48〈[〉C , across various
( |Xu |2)0-levels, A0

C + T 0( and N0
(
have correlations approximately equalling 0.90 and the

standard deviations of N0
(
are typically twice as large as those of D0.

5. Summary of conclusions
In statistically stationary homogeneous/periodic turbulence the average relation 〈N0

(
〉 ≈

〈D0
A ,a〉 − 〈n0〉 holds in the dissipation/diffusion-dominated range A3 < 0.5〈_〉C , yet it does

not represent reality locally in space and time. Events where N0
(
≈ D0

A ,a − n0 can of course
be found but they are few and far between. What actually happens at these small length
scales cannot be described without A0

C + T 0( even though the fluctuation amplitudes of
this Lagrangian transport term (which vanishes on average) decrease towards zero with
decreasing A3 in the dissipation/diffusion-dominated range A3 < 0.5〈_〉C .
In most of the flow for most of the time the levels of ( |Xu |2)0 at these length scales are low

to moderate and one finds significant correlations betweenA0
C +T 0( andN0

(
on the one hand

and between A0
C + T 0( and D0 on the other. There are interscale transfer events happening

along some parts of Lagrangian path and diffusion/dissipation events happening along some
other parts of Lagrangian path but rarely do they happen together. Also, viscous diffusion in
space is typically positive and counteracts the energy reducing action of D0

A ,a − n0 which is
typically negative.
Aswe focus on the highest levels of ( |Xu |2)0 at these length scales the picture changes quite

drastically but A0
C + T 0( maintains a presence even if weakened. The highest correlation is

now betweenN0
(
andD0. Even though this correlation is similar to that ofN0

(
andD0

A ,a−n0,
we have seen that there is much more of a tendency for N0

(
andD0 to get close to each other

than N0
(
and D0

A ,a − n0. This does not happen perfectly though given that A0
C + T 0( retains

some correlation with both −N0
(
andD0, which means that all terms inA0

C +T 0( +N
0

(
= D0

can momentarily follow each other simultaneously at these very high ( |Xu |2)0 levels.
It is important to stress the role of viscous diffusion in physical space which cannot be

typically neglected from the balance of N0
(
at the very high ( |Xu |2)0 regions where there is

of course high local inhomogeneity. Furthermore, in these regions the viscous diffusion in
physical space does not resist any longer but in fact acquires a tendency to cooperate with
D0
A ,a − n0 and enhance energy reduction.
An ingredient that is sometimes used for the derivation of local viscous length scales is
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the assumption of a local balance between a local turnover time and a local viscous diffusion
time (Paladin & Vulpiani 1987; Frisch & Vergassola 1991; Dubrulle 2019). This typically
amounts to a local balance between interscale transfer rate and viscous diffusion in scale
space/dissipation i.e. N0

(
≈ D0

A ,a − n0. The present study might offer a more complete view
of the types of local and instantaneous balances which might be used to obtain local viscous
length scales.
Acknowledgements. We thank Professor S. Goto for allowing us to use his parallelised pseudospectral DNS
code for periodic turbulence.

Funding. HSL and JCV acknowledge support from EPSRC award number EP/L016230/1. Furthermore,
JCV acknowledges the Chair of Excellence CoPreFlo funded by I-SITE-ULNE (grant no. R-TALENT-19-
001-VASSILICOS), MEL (grant no. CONVENTION-219-ESR-06) and Region Hauts de France (grant no.
20003862); and also funding by the European Union (ERC Advanced Grant NoStaHo, project number
101054117). Views and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research Council. Neither the European Union nor the
granting authority can be held responsible for them.

Declaration of Interests. The authors report no conflict of interest.

Appendix A. The KHMH equation and associated Helmholtz decomposition
The KHMH equation is derived directly from the incompressible Navier-Stokes equations
at locations x+ and x− and it governs the evolution of the velocity difference squared |Xu |2
(Hill 2002). It is written in terms of the centroid x = (x+ + x−)/2 and separation r = x+ − x−
vectors and differences of scalar and vector fields. The symbol X preceding a scalar or vector
field q denotes Xq = q+ − q− where q+ = q(x + r/2, C) and q− = q(x − r/2, C). With this
notation the KHMH equation reads

m |Xu |2
mC

+
D+
9
+ D−

9

2
m |Xu |2
mG 9

+ XD 9
m |Xu |2
mA 9

= − 2
d

m (X?XD8)
mG8

+ 2a
m2 |Xu |2
mA 9mA 9

+ a
2
m2 |Xu |2
mG 9mG 9

+ 2a
[
(
mD+

8

mG+
9

)2 + (
mD−

8

mG−
9

)2
]
+ 2XD8X 58 . (A 1)

We associate the KHMH terms with the following physical processes (Yasuda & Vassilicos
2018)

AC (x, r, C) ≡ m/mC ( |Xu |2) is the local unsteadiness, or time-derivative, term; (A 2)

T (x, r, C) ≡ m/mG: ((D+: + D
−
: ) |Xu |

2/2) is the turbulent transport term; (A 3)

N (x, r, C) ≡ m/mA: (XD: |Xu |2) is the interscale energy transfer term; (A 4)
T? (x, r, C) ≡ −(2/d)m/mG: (XD:X?) is the pressure-velocity term; (A 5)

DA ,a (x, r, C) ≡ 2am2/mA2
: ( |Xu |

2) is the viscous diffusion in r-space; (A 6)

DG,a (x, r, C) ≡ am2/mG2
: ( |Xu |

2/2) is the viscous diffusion in x-space; (A 7)
I(x, r, C) ≡ 2XD:X 5: is the energy input rate; (A 8)

n∗(x, r, C) ≡ 2a[(mD+9/mG+: ))
2 + (mD−9 /mG−: ))

2] (A 9)
is two times the sum of the pseudo-dissipation at x+ and x−.

Larssen & Vassilicos (2023) split the KHMH equation A 1 into two new KHMH equations
(see 2.1-2.2): one equation arising from the centroid solenoidal Xu dynamics and one equation
arising from the centroid irrotational Xu dynamics. This Helmholtz decomposition gives rise
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Figure 8: (0) Sketch of the spherical coordinate system and the filled square denotes origo.
(1) Sketch of the integration and grid points with spherical equidistant integration for A = 1
and A = 2. The filled circles are grid points and the open circles are the integration points.

to four new KHMH terms: the irrotational and solenoidal interspace transport terms T
�
and

T
(
and the irrotational and solenoidal interscale transfer terms N

�
and N

(
.

We calculate these terms in this study in terms of the irrotational KHMH equation and the
pressure-velocity term (see section 2), but they can also be calculated explicitly in Fourier
space in a periodic domain at a higher computational cost (Larssen & Vassilicos 2023). The
solenoidal and irrotational interscale transfer terms read N

(
= 2Xu · aN

(
and N

�
= 2Xu · aN

�

and the solenoidal and irrotational transport terms read T
(
= 2Xu · aT

(
and T

�
= 2Xu · aT

�
,

where aN = Xu · ∇rXu, aT = 1
2 (u

+ + u−) · ∇xXu, q( (x, r, C) denotes the solenoidal part
of a vector field q(x, r, C) and q

�
(x, r, C) denotes the solenoidal part of q(x, r, C). When

calculated explicitly in a periodic domain, one calculates the solenoidal and irrotational parts
of aN and aT with the standard Helmholtz decomposition in Fourier space before calculating
the KHMH analogue terms by contracting with 2Xu.

Appendix B. KHMH numerical integration and residual
In this appendix we detail our KHMH numerical spherical averaging operation and the
KHMH residual. Let Q denote an arbitrary KHMH term. The spherical averaging operation
can be written

Q0 = 1
cA2
3

∭
|r |=A3

Q3r, (B 1)

=
1

4c

∫ c

0
sinq 3q

∫ 2c

0
Q 3\, (B 2)

where \ and q denote the polar and azimuthal angles (see figure 8(0)). We approximate (B 2)
numerically by repeated one-dimensional quadratures

Q0 ≈ 1
4c

∫ c

0
sinq 3q

#\ (q)∑
9=1

F 9Q(q, \ 9)Δ\, (B 3)

≈ 1
4c

#q (A )∑
8=1

#\ (A ,q)∑
9=1

F8F 9sinq8Q(q8 , \ 9)Δ\Δq, (B 4)

where F8 and F 9 are integration weights, #q and #\ are the number of grid points in
azimuthal and polar directions,Δ\ andΔq are the spherically equidistant integration spacings
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Figure 9: Surface-averaged solenoidal KHMH equation residual '0 spatio-temporal
averages and standard deviations across small scales. The vertical line denotes A3 = 〈[〉C .

and A denotes the integration radius in integer grid points. For a given A we have #q = 4A + 1
and #\ = 8Aq = 8Asinq available grid points where Aq denotes the radius of the circle
at the given q value (see figure 8(1)). The grid spacings are given as Δq = c

#q (A )−1 and
Δ\ = 2c

#\ (A ,q)−1 . We use Simpson’s rule to set the weights F8 and F 9 .
The equidistant approach limits the distance between grid points and integration points

(see figure 8(1)) such that we limit the effect of interpolation errors in the computation
of the KHMH terms Q(q8 , \ 9) in (B 4). This is important at small scales where the grid
spacing and the scales of interest are of similar order of magnitude. This contrasts with a
Lebedev quadrature approachwhere interpolation errors from a discrete grid is not considered
(Lebedev 1975). As we do not calculate the entire Q field in x-space, we can not use the
recent integration method of Iyer et al. (2017), which spectrally interpolates the field of
interest to Lebedev integration points.
The smallest integration sphere we employ is the sphere with A = 1 and A3 ≈ 〈[〉C . This

results in coarse spherical averages Q0 (i.e. 26 integration points). The spherically averaged
Q might not be converged in terms of the spherical integration and one should be careful
when comparing absolute statistics such as 〈Q0〉 at small scales between studies using coarse
surface integrations. We get a lower estimate of the integration error at A = 1 by integrating a
constant over the sphere with a relative error of 3 ∗ 10−3. In terms of relative magnitudes, the
coarseness of the spherical averaging does not invalidate relative statements between KHMH
terms Q01 and Q02 such as Q01 � Q

0
2 . We see from (B 4) that the local difference between

KHMH terms Q01 and Q02 can only be considerable if Q1 � Q2 in an average sense over the
considered separations r.
We can use the solenoidal KHMH equation to assess the accuracy of the computed

KHMH terms. We denote the local residual of the solenoidal KHMH equation by ' and
its spherical average '0. We plot in figure 9 the '0 spatio-temporal averages and standard
deviations across scales. This shows that even at small scales the KHMH terms are calculated
satisfactorily. The averages and standard deviations of the residual are always an order of
magnitude smaller than the average and standard deviation solenoidal interscale transfer
term, which is characteristic of the small scale cascade dynamics.

Appendix C. Conditional KHMH statistics across scales
The plots in figures 6 and 7 are given for A3 = 〈[〉C . Here we complement these figures with
the same plots for other values of A3 between 〈[〉C and 0.5〈_〉C in support of the claim that
the conclusions derived from figures 6 and 7 in the paper’s main text are valid for the range
of dissipative/diffusive length scales between 〈[〉C and 0.5〈_〉C .
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Figure 10: (0, 2, 4): Scatter plots of D0A ,a − n0 and N0
(
at (0) A3 = 〈[〉C , (2) A3 = 〈0.24_〉C

and (4) A3 = 〈0.48_〉C conditioned on the 5% least energetic events (refered to as LE in
figure 5). (1, 3, 5 ): Scatter plots of D0A ,a − n0 and N0

(
at (1) A3 = 〈[〉C , (3) A3 = 〈0.24_〉C

and ( 5 ) A3 = 〈0.48_〉C conditioned on the 5% most energetic events (refered to as HE in
figure 5). The black dotted lines show N0

(
= D0A ,a − n0 and the data points are colored

with the ratio |N0
(
|/|D0A ,a − n0 |. D0A ,a − n0 and N0

(
are normalised with the standard

deviation of N0
(
conditioned on LE events (0, 2, 4) and HE events (1, 3, 5 ).
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Figure 11: (0, 2, 4) Conditional standard deviations of various surface-averaged KHMH
terms Q0 for (0) A3 = 〈[〉C , (1) A3 = 0.24〈_〉C and (2) A3 = 0.48〈_〉C ), and (1, 3, 5 )

conditional Pearson correlation coefficients of pairs of surface-averaged KHMH terms Q01
and Q02 for (1) A3 = 〈[〉C , (3) A3 = 0.24〈_〉C and ( 5 ) A3 = 0.48〈_〉C ). These standard
deviations and correlation coefficients are calculated from spatio-temporal statistics

conditioned on various ranges of ( |Xu |2)0 at the A3 value of each corresponding plot. The
conditioning is identical to that in figure 4: we consider 20 ranges of ( |Xu |2)0 values and

the horizontal axes display the average ( |Xu |2)0 values within each ( |Xu |2)0 range
normalised by the spatio-temporally averaged small-scale energy 〈|Xu |2〉0 . Increasing

values of ( |Xu |2)0 are therefore from left to right on the horizontal axes.
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