
HAL Id: hal-04236012
https://hal.science/hal-04236012

Preprint submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Scale-by-scale non-equilibrium with Kolmogorov-like
scalings in non-homogeneous stationary turbulence

Paul Beaumard, Pierre Bragança, Christophe Cuvier, Konstantinos Steiros,
John Christos Vassilicos

To cite this version:
Paul Beaumard, Pierre Bragança, Christophe Cuvier, Konstantinos Steiros, John Christos Vassilicos.
Scale-by-scale non-equilibrium with Kolmogorov-like scalings in non-homogeneous stationary turbu-
lence. 2023. �hal-04236012�

https://hal.science/hal-04236012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Banner appropriate to article type will appear here in typeset article

Scale-by-scale non-equilibrium with1

Kolmogorov-like scalings in non-homogeneous2

stationary turbulence3

P. Beaumard 1, P. Bragança 1, C. Cuvier 1, K. Steiros 2 and J.C Vassilicos 1†4

1Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 - LMFL -5
Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, F-59000 Lille, France6
2Department of Aeronautics, Imperial College London, London SW7 2AZ, United Kingdom7

(Received 13 June 2023; revised xx; accepted xx)8

An improved version of the non-equilibrium theory of non-homogeneous turbulence of Chen9
& Vassilicos (2022) predicts that an intermediate range of length-scales exists where the10
interscale turbulence transfer rate, the two-point interspace turbulence transport rate and the11
two-point pressure gradient velocity correlation term in the two-point small-scale turbulent12
energy equation are all proportional to the turbulence dissipation rate and independent13
of length-scale. Particle Image Velocimetry (PIV) measurements in a field of view under14
the turbulence-generating impellers in a baffled water tank support these predictions and15
show that the measured small-scale turbulence is significantly non-homogeneous. The PIV16
measurements also suggest that the rate with which large scales lose energy to the small17
scales in the two-point large-scale turbulent energy equation behaves in a similar way and18
that this rate may not balance the interscale turbulence transfer rate in the two-point small-19
scale turbulent energy equation because of turbulent energy transport caused by the non-20
homogeneity.21

Key words: Turbulence theory, Particle Image Velocimetry, Mixing tank22

1. Introduction23

The Kolmogorov 1941 theory of statistically homogeneous turbulence (see Frisch (1995),24
Pope (2000)) predicts that the interscale transfer rate of turbulent kinetic energy is approx-25
imately balanced by the turbulence dissipation rate across a wide range of length scales in26
the inertial range as the Reynolds number tends to infinity. This prediction of scale-by-scale27
equilibrium holds for statistically stationary forced homogeneous turbulence (see Frisch28
(1995)) but is also made for decaying homogeneous turbulence on the basis of a small-scale29
stationarity hypothesis (see Frisch (1995), Pope (2000) and section 2 of Chen & Vassilicos30
(2022)). A widely held view is that the turbulence is always statistically homogeneous at31
small enough length-scales if the Reynolds number is large enough. But what if the Reynolds32
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number, even if high, is not high enough for homogeneity to exist at the smallest scales?33
And if, in such circumstances, one finds simple scalings and scale-by-scale balances which34
appear independent of the details of the non-homogeneity, would these non-homogeneity35
laws survive as the Reynolds is taken to infinity? Or would they locally tend to Kolmogorov36
scale-by-scale equilibrium, in which case Kolmogorov scale-by-scale equilibrium would, in37
some sense, be an asymptotic case of these non-homogeneity laws?38
In this paperwe address statistically stationary non-homogeneous turbulence atmoderate to39

high Reynolds numbers and we attempt to provide some partial answer to the first one of these40
questions: can simple scale-by-scale turbulence energy balances exist in non-homogeneous41
turbulence? The questions concerning the limit towards infinite Reynolds numbers cannot be42
answered at present and may, perhaps, never be answered unless one can some day answer43
them by rigorous mathematical analysis of the Navier-Stokes equations. The problem with44
claims made for Reynolds numbers tending to infinity is that one can always argue that the45
Reynolds number is not large enough if an experiment or simulation does not confirm the46
claims.47
We chose to study the turbulent flow under the turbulence-generating rotating impellers in a48

baffled tankwhere the baffles break the rotation of the flow. This is a flowwhere the turbulence49
is statistically stationary, where Taylor length-based Reynolds numbers up to order 103 can be50
achieved, where different types of impeller can produce significantly different turbulent flows51
andwhere we can use a two-dimensional two-component (2D2C) Particle ImageVelocimetry52
(PIV) that is highly resolved in space and capable to access estimates of turbulence dissipation53
rates as well as parts of various interscale and interspace turbulent transfer/transport rates.54
Only full three-dimensional three-component highly resolved PIV measurements can, in55
principle, access the turbulence dissipation and these transfer/transport rates in full, but such56
an approach is currently beyond our reach over the significant range of length scales needed57
to establish scale-by-scale energy balances. The truncated transfer/transport rates obtained58
by our 2D2C PIV do, nevertheless, exhibit interesting properties, in particular because they59
are concordant with a recent non-equilibrium theory of non-homogeneous turbulence (Chen60
& Vassilicos (2022)) which we also further develop here.61
In the following section we present the two-point scale-by-scale equations which form the62

basis of this study’s theoretical framework. In section 3,we discuss interscale turbulent energy63
transfers and the special case of freely decaying statistically homogeneous turbulence as a64
point of reference. Section 4 presents the experiment apparatus and the 2D2C PIV.We use our65
PIVmeasurements to assess two-point turbulence production in section 5 and linear transport66
terms (e.g. mean advection) in section 6. In section 7 we present intermediate similarity67
predictions andPIVmeasurements of second order structure functions of turbulent fluctuating68
velocities. Section 8 presents theoretical predictions of non-equilibrium small-scale turbulent69
energy budgets for non-homogeneous turbulence and related 2D2C PIV measurements.70
Finally, section 9 presentsmeasurements and a theoretical discussion of elements of the large-71
scale turbulent energy budget, section 10 proposes a small-scale homogeneity hypothesis and72
we conclude in section 11.73

2. Theoretical framework based on two-point Navier-Stokes equations74

Interscale turbulence transfers for incompressible turbulence can be studied in the presence of75
all other co-existing turbulence transfer/transportmechanisms in terms of two-point equations76
exactly derived from the incompressible Navier-Stokes equations (seeHill (2001), Hill (2002)77
and Germano (2007)) without any hypotheses or assumptions, in particular no assumptions78
of homogeneity or periodicity. The incompressible Navier-Stokes equation is written at two79
points 𝜻− = 𝑿 − 𝒓 and 𝜻+ = 𝑿 + 𝒓 in physical space (see figure 1) where 𝑿 is the centroid80
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Figure 1: Schematic of fluid velocities at points 𝜻− = 𝑿 − 𝒓 and 𝜻+ = 𝑿 + 𝒓.

and 2𝒓 is the two-point separation vector. One defines the two-point velocity half difference81

𝜹𝒖(𝑿, 𝒓, 𝑡) ≡ 𝒖+−𝒖−

2 where 𝒖+ ≡ 𝒖(𝜻+) and 𝒖− ≡ 𝒖(𝜻−) are the fluid velocities at each82

one of the two points and the two-point pressure half difference 𝛿𝑝(𝑿, 𝒓, 𝑡) ≡ 𝑝+−𝑝−

2 where83
𝑝+ ≡ 𝑝(𝜻+) and 𝑝− ≡ 𝑝(𝜻−) are the pressure over density ratios at each one of the two84
points. Incompressibility immediately imposes ∇𝑿 .𝜹𝒖 = ∇𝒓 .𝜹𝒖 = 0 and the Navier Stokes85
equation implies (Hill (2001), Hill (2002))86

𝜕𝜹𝒖

𝜕𝑡
+ (𝒖𝑿 .∇𝑿 ) 𝜹𝒖 + (𝜹𝒖.∇𝒓 ) 𝜹𝒖 = −∇𝑿𝛿𝑝 + 𝜈

2
∇𝑿

2𝜹𝒖 + 𝜈

2
∇𝒓
2𝜹𝒖 (2.1)87

where 𝒖𝑿 (𝑿, 𝒓, 𝑡) ≡ 𝒖++𝒖−

2 ; ∇X and ∇𝑿
2 are the gradient and Laplacian in X space; ∇r and88

∇𝒓
2 are the gradient and Laplacian in r space; and 𝜈 is the kinematic viscosity.89
An energy equation is readily obtained by multiplying equation 2.1 with 2𝜹𝒖:90

𝜕 |𝜹𝒖 |2
𝜕𝑡

+∇𝑿 .(𝒖𝑿 |𝜹𝒖 |2)+∇𝒓 .(𝜹𝒖 |𝜹𝒖 |2) = −2∇𝑿 .(𝜹𝒖𝛿𝑝)+
𝜈

2
∇𝑿

2 |𝜹𝒖 |2+𝜈
2
∇𝒓
2 |𝜹𝒖 |2−1

2
𝜖+−1
2
𝜖−

(2.2)91

where 𝜖+ = 𝜈
𝜕𝑢+

𝑖

𝜕𝜁 +
𝑘

𝜕𝑢+
𝑖

𝜕𝜁 +
𝑘

and 𝜖− = 𝜈
𝜕𝑢−

𝑖

𝜕𝜁 −
𝑘

𝜕𝑢−
𝑖

𝜕𝜁 −
𝑘

. With a Reynolds decomposition 𝜹𝒖 = 𝜹𝒖 + 𝜹𝒖′,92

𝒖𝑿 = 𝒖𝑿 + 𝒖𝑿
′, 𝛿𝑝 = 𝛿𝑝 + 𝛿𝑝′ where the overline signifies an average over time under93

the assumption of statistical stationarity, this general two-point energy equation leads to the94
following pair of two-point energy equations:96

(𝒖𝑿 .∇𝑿 + 𝜹𝒖.∇𝒓 )
1
2
|𝜹𝒖 |2 + 𝑃𝑟 + 𝑃𝑠

𝑋𝑟 +
𝜕

𝜕𝑥 𝑗

(𝛿𝑢𝑖𝑢′𝑋 𝑗
𝛿𝑢′

𝑖
) + 𝜕

𝜕𝑟 𝑗
(𝛿𝑢𝑖𝛿𝑢′𝑗𝛿𝑢′𝑖)

= −∇𝑿 .(𝜹𝒖𝛿𝑝) +
𝜈

2
∇𝑿

2 1
2
|𝜹𝒖 |2 + 𝜈

2
∇𝒓
2 1
2
|𝜹𝒖 |2 − 𝜈

4
𝜕𝑢+𝑖
𝜕𝜁+

𝑘

𝜕𝑢+𝑖
𝜕𝜁+

𝑘

− 𝜈

4
𝜕𝑢−𝑖
𝜕𝜁−

𝑘

𝜕𝑢−𝑖
𝜕𝜁−

𝑘

(2.3)97

(𝒖𝑿 .∇𝑿 + 𝜹𝒖.∇𝒓 )
1
2
|𝜹𝒖′ |2 − 𝑃𝑟 − 𝑃𝑠

𝑋𝑟 + ∇𝑿 .(𝒖𝑿
′ 1
2
|𝜹𝒖′ |2) + ∇𝒓 .(𝜹𝒖′ 1

2
|𝜹𝒖′ |2)

= −∇𝑿 .(𝜹𝒖′𝛿𝑝′) + 𝜈

2
∇𝑿

2 1
2
|𝜹𝒖′ |2 + 𝜈

2
∇𝒓
2 1
2
|𝜹𝒖′ |2 − 𝜈

4
𝜕𝑢′+

𝑖

𝜕𝜁+
𝑘

𝜕𝑢′+
𝑖

𝜕𝜁+
𝑘

− 𝜈

4
𝜕𝑢′−

𝑖

𝜕𝜁−
𝑘

𝜕𝑢′−
𝑖

𝜕𝜁−
𝑘

(2.4)99

where 𝑃𝑟 = −𝛿𝑢′
𝑗
𝛿𝑢′

𝑖
𝜕𝛿𝑢𝑖
𝜕𝑟 𝑗

= −𝛿𝑢′
𝑗
𝛿𝑢′

𝑖
1
2 [Σ𝑖 𝑗 (X + r) + Σ𝑖 𝑗 (X − r)] and 𝑃𝑠

𝑋𝑟
= −𝑢′

𝑋 𝑗
𝛿𝑢′

𝑖
𝜕𝛿𝑢𝑖
𝜕𝑋 𝑗
,100

with Σ𝑖 𝑗 ≡ 1
2 (

𝜕𝑢𝑖
𝜕𝑋 𝑗

+ 𝜕𝑢 𝑗

𝜕𝑋𝑖
), are two-point turbulence production rates. Indeed, being propor-101

tional to mean flow gradient terms and to averages of products of fluctuating velocities, they102
represent linear turbulence fluctuation processes and they exchange energy between |𝜹𝒖 |2103

and |𝜹𝒖′ |2 because they appear with opposite signs in equations (2.3) and (2.4) as already104
noted by Alves Portela et al. (2017).105
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The two-point turbulence production terms 𝑃𝑟 and 𝑃𝑠
𝑋𝑟
differ. 𝑃𝑟 results from the product106

of the two-point small-scale Reynolds stress 𝛿𝑢′
𝑗
𝛿𝑢′

𝑖
with the two-point half sum of mean107

strain rates 12 (Σ𝑖 𝑗 (X + r) + Σ𝑖 𝑗 (X − r)) both of which are symmetric in (𝑖, 𝑗). On the other108

hand, 𝑃𝑠
𝑋𝑟
results from the product of non-symmetric small/large-scale correlation 𝑢′

𝑋 𝑗
𝛿𝑢′

𝑖
109

with the two-point gradient 𝜕𝛿𝑢𝑖
𝜕𝑋 𝑗
. To better set the context for the two-point turbulence110

production rate 𝑃𝑠
𝑋𝑟
one needs to consider the evolution equation for the two-point velocity111

half sum 𝒖𝑿 (𝑿, 𝒓, 𝑡).112
This equation was first obtained by Germano (2007):113

𝜕𝒖𝑿

𝜕𝑡
+ (𝒖𝑿 .∇𝑿 ) 𝒖𝑿 + (𝜹𝒖.∇𝒓 ) 𝒖𝑿 = −∇𝑿 𝑝𝑋 + 𝜈

2
∇𝑿

2𝒖𝑿 + 𝜈

2
∇𝒓
2𝒖𝑿 (2.5)114

where 𝑝𝑋 ≡ 𝑝++𝑝−

2 , and note that 𝒖𝑿 is incompressible, i.e.∇𝑿 .𝒖𝑿 = ∇𝒓 .𝒖𝑿 = 0. An energy115
equation, also first derived by Germano (2007), is readily obtained by multiplying equation116
2.5 with 2𝒖𝑿 :117

𝜕 |𝒖𝑿 |2
𝜕𝑡

+∇𝑿 .(𝒖𝑿 |𝒖𝑿 |2)+∇𝒓 .(𝜹𝒖 |𝒖𝑿 |2) = −2∇𝑿 .(𝒖𝑿𝑃𝑋)+
𝜈

2
∇𝑿

2 |𝒖𝑿 |2+
𝜈

2
∇𝒓
2 |𝒖𝑿 |2−

1
2
𝜖+−1
2
𝜖−

(2.6)118
A pair of Reynolds averaged two-point energy equations follows (using 𝑝𝑋 = 𝑝𝑋 + 𝑝′

𝑋
):120

(𝒖𝑿 .∇𝑿 + 𝜹𝒖.∇𝒓 )
1
2
|𝒖𝑿 |2 + 𝑃𝑋 + 𝑃𝑙

𝑋𝑟 +
𝜕

𝜕𝑥 𝑗

(𝑢𝑋𝑖𝑢′𝑋𝑖𝑢′𝑋 𝑗
) + 𝜕

𝜕𝑟 𝑗
(𝑢𝑋𝑖𝛿𝑢′𝑗𝑢′𝑋𝑖)

= −∇𝑿 .(𝒖𝑿 𝑝𝑋) +
𝜈

2
∇𝑿

2 1
2
|𝒖𝑿 |2 +

𝜈

2
∇𝒓
2 1
2
|𝒖𝑿 |2 −

𝜈

4
𝜕𝑢+𝑖
𝜕𝜁+

𝑘

𝜕𝑢+𝑖
𝜕𝜁+

𝑘

− 𝜈

4
𝜕𝑢−𝑖
𝜕𝜁−

𝑘

𝜕𝑢−𝑖
𝜕𝜁−

𝑘

(2.7)121

(𝒖𝑿 .∇𝑿 + 𝜹𝒖.∇𝒓 )
1
2
|𝒖′

𝑿 |2 − 𝑃𝑋 − 𝑃𝑙
𝑋𝑟 + ∇𝑿 .(𝒖𝑿

′ 1
2
|𝒖𝑿

′ |2) + ∇𝒓 .(𝜹𝒖′ 1
2
|𝒖𝑿

′ |2)

= −∇𝑿 .(𝒖𝑿
′𝑝′

𝑋
) + 𝜈

2
∇𝑿

2 1
2
|𝒖′

𝑿 |2 +
𝜈

2
∇𝒓
2 1
2
|𝒖′

𝑿 |2 −
𝜈

4
𝜕𝑢′+

𝑖

𝜕𝜁+
𝑘

𝜕𝑢′+
𝑖

𝜕𝜁+
𝑘

− 𝜈

4
𝜕𝑢′−

𝑖

𝜕𝜁−
𝑘

𝜕𝑢′−
𝑖

𝜕𝜁−
𝑘

(2.8)123

124
where 𝑃𝑋 = −𝑢′

𝑋 𝑗
𝑢′
𝑋𝑖

𝜕𝑢𝑋𝑖

𝜕𝑋 𝑗
= −𝑢′

𝑋 𝑗
𝑢′
𝑋𝑖
1
2 [Σ𝑖 𝑗 (X + r) + Σ𝑖 𝑗 (X − r)] and 𝑃𝑙

𝑋𝑟
= −𝛿𝑢′

𝑗
𝑢′
𝑋𝑖

𝜕𝛿𝑢𝑖
𝜕𝑋 𝑗
.125

These two-point turbulence production rates represent linear turbulence fluctuation processes126

and an exchange of energy between |𝒖𝑿 |2 and |𝒖′
𝑿 |2 because they appear with opposite signs127

in equations (2.7) and (2.8).128
Once again, the two-point turbulence production terms 𝑃𝑋 and 𝑃𝑙

𝑋𝑟
differ. 𝑃𝑋 results129

from the product of the two-point large-scale Reynolds stress 𝑢′
𝑋 𝑗
𝑢′
𝑋𝑖
with the two-point half130

sum of mean strain rates 12 (Σ𝑖 𝑗 (X + r) + Σ𝑖 𝑗 (X − r)) both of which are symmetric in (𝑖, 𝑗).131
This is similar to 𝑃𝑟 except that the two-point Reynolds stress is now large-scale rather than132
small-scale because it is defined in terms of the fluctuating velocity half sum rather than half133
difference. On the other hand, 𝑃𝑙

𝑋𝑟
results from the product of non-symmetric small/large-134

scale correlation 𝑢′
𝑋𝑖
𝛿𝑢′

𝑗
with the two-point gradient 𝜕𝛿𝑢𝑖

𝜕𝑋 𝑗
, which is similar to 𝑃𝑠

𝑋𝑟
. However,135

the sum of both, i.e. 𝑃𝑋𝑟 ≡ 𝑃𝑠
𝑋𝑟

+ 𝑃𝑙
𝑋𝑟
, results from the product of a symmetric small/large-136

scale correlation 𝑢′
𝑋𝑖
𝛿𝑢′

𝑗
+ 𝑢′

𝑋 𝑗
𝛿𝑢′

𝑖
with 12 [Σ𝑖 𝑗 (X + r) − Σ𝑖 𝑗 (X − r)] and contributes to the137

linear transfer of energy by total production rate 𝑃𝑋 + 𝑃𝑟 + 𝑃𝑋𝑟 between 12 |𝒖
+ |2 + 12 |𝒖

− |2 and138
1
2 |𝒖′+ |2 + 12 |𝒖′+ |2.139

Focus on Fluids articles must not exceed this page length
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3. Interscale turbulent energy transfers140

Besides two-point turbulent production terms, the two-point energy equations of the previous141
section involve important interscale and interspace transport terms. Germano (2007) inter-142
preted his equations 2.5 and 2.6 in the context of large eddy simulations (LES). He showed143
that the term (𝜹𝒖.∇𝒓 ) 𝒖𝑿 in equation 2.5 can be interpreted as the gradient of a subgrid144
stress. This term gives rise to the term ∇𝒓 .(𝜹𝒖 |𝒖𝑿 |2) in equation 2.6 which is therefore145
an energy transfer rate between large-scale velocities (velocity half sum) and small-scale146
velocities (velocity half difference). Germano (2007) also derived the kinematic equation147

∇𝒓 .(𝜹𝒖 |𝒖𝑿 |2) + ∇𝒓 .(𝜹𝒖 |𝜹𝒖 |2) = 2∇𝑿 .(𝜹𝒖(𝜹𝒖 · 𝒖𝑿 )) (3.1)148

which relates ∇𝒓 .(𝜹𝒖 |𝒖𝑿 |2) to ∇𝒓 .(𝜹𝒖 |𝜹𝒖 |2) in equation 2.2 where ∇𝒓 .(𝜹𝒖 |𝜹𝒖 |2) accounts149
for non-linear interscale energy transfer and the turbulence cascade, e.g. see Chen &150
Vassilicos (2022).151

It must be stressed, however, that the term ∇𝒓 .(𝜹𝒖 |𝜹𝒖 |2) in equation 2.2 does not only152
include non-linear interscale transfer responsible for the turbulence cascade, it also includes153
two-point turbulence production and interscale energy transfer by mean flow differences.154
Indeed, it gives rise in equation 2.4 to the two-point turbulence production rate 𝑃𝑟 , to the155

linear average interscale turbulent energy transfer rate by mean flow differences 𝜹𝒖.∇𝒓 |𝜹𝒖′ |2156

and to the non-linear average interscale turbulent energy transfer rate∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) relating157
to the turbulence cascade. The other terms in the energy equation 2.4 arise from the pressure158
gradient, the viscous terms and the advection of small-scale velocity 𝜹𝒖 by the large-scale159
velocity 𝒖𝑿 in equation 2.1. In particular, this advection term gives rise to 𝑃𝑠

𝑋𝑟
and to the160

interspace turbulent transport rate of smaller-scale turbulence energy, i.e. ∇𝑿 .(𝒖𝑿
′ |𝜹𝒖′ |2).161

Similar observations can be made for the large-scale energy equations 2.6 and 2.8 where162
∇𝒓 .(𝜹𝒖 |𝒖𝑿 |2) in 2.6 gives rise in 2.8 to the two-point production rate 𝑃𝑙

𝑋𝑟
(not 𝑃𝑋), to the163

linear average turbulent energy transfer rate by mean flow differences 𝜹𝒖.∇𝒓 |𝒖′
𝑿 |2 and to the164

fully non-linear average turbulent energy transfer rate ∇𝒓 .(𝜹𝒖′ |𝒖′
𝑿 |2). The other terms in the165

energy equation 2.8 arise from the pressure gradient, the viscous terms and the self-advection166
of large-scale velocity 𝒖𝑿 in equation 2.5. In particular, this self-advection term gives rise to167
𝑃𝑋 (not 𝑃𝑙

𝑋𝑟
) and to the interspace turbulent transport rate of larger-scale turbulence energy168

, i.e. ∇𝑿 .(𝒖𝑿
′ |𝒖𝑿

′ |2)169

Returning to the two-point turbulence production terms, 𝑃𝑟 and 𝑃𝑠
𝑋𝑟
appear in the small-170

scale energy equation 2.4 whereas 𝑃𝑋 and 𝑃𝑙
𝑋𝑟
appear in the large-scale energy equation171

2.8. All four terms vanish if the mean flow is homogeneous but 𝑃𝑟 represents turbulence172
production by mean flow non-homogeneities at small scales whereas 𝑃𝑋 represents turbu-173
lence production by mean flow non-homogeneities at large scales. It is worth noting that174

𝑃𝑋 tends to the usual one-point turbulence production rate −𝑢′𝑗𝑢′𝑖Σ𝑖 𝑗 in the limit r → 0175

(𝒖′ is the fluctuating turbulent velocity at one point) whereas 𝑃𝑟 tends to zero in that limit.176
𝑃𝑙
𝑋𝑟
and 𝑃𝑠

𝑋𝑟
also tend to zero in that limit but they represent turbulence production by177

mean flow non-homogeneities that is cross-scale as they involve correlations between the178
fluctuating velocity half differences and fluctuating velocity half sums. The hypothesis that179
large and small scales may be uncorrelated leads to the suggestion that 𝑃𝑙

𝑋𝑟
and 𝑃𝑠

𝑋𝑟
may be180

increasingly negligible for decreasing |r|, as indeed found for 𝑃𝑠
𝑋𝑟
in the intermediate layer181

of fully developed turbulent channel flow by Apostolidis et al. (2023).182

Applying Reynolds averaging to the kinematic identity 3.1 we obtain183
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∇𝒓 .(𝜹𝒖 |𝜹𝒖 |2) + ∇𝒓 .(𝜹𝒖 |𝜹𝒖′ |2) + ∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) + 2∇𝒓 .(𝜹𝒖′ (𝜹𝒖′𝜹𝒖))

+ ∇𝒓 .(𝜹𝒖 |𝒖𝑿 |2) + ∇𝒓 .(𝜹𝒖 |𝒖𝑿
′ |2) + ∇𝒓 .(𝜹𝒖′ |𝒖𝑿

′ |2) − 2𝑃𝑙
𝑋𝑟

= 2∇𝑿 .(𝜹𝒖(𝜹𝒖.𝒖𝑿 )) + 2∇𝑿 .(𝜹𝒖(𝜹𝒖′.𝒖′
𝑿 ))

+ 2∇𝑿 .(𝜹𝒖′ (𝜹𝒖′.𝒖′
𝑿 )) + 2∇𝑿 .(𝜹𝒖′ (𝜹𝒖.𝒖′

𝑿 )) − 2𝑃𝑟

(3.2)185

which demonstrates that, in general, the average interscale turbulent energy transfer rate186

∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) reflecting the turbulence cascade does not trivially relate with the average187

turbulent energy transfer ∇𝒓 .(𝜹𝒖′ |𝒖𝑿
′ |2) reflecting work by subgrid stresses (see Germano188

(2007)).189

A notable exception is statistically homogeneous turbulence where 𝜹𝒖 = 0, 𝑃𝑟 = 0,190
𝑃𝑙
𝑋𝑟

= 0 and derivatives with respect to X of third order fluctuating velocity statistics such191

as ∇𝑿 .(𝜹𝒖′ (𝜹𝒖′.𝒖′
𝑿 ) vanish (we cannot assume that 𝒖𝑿 .∇𝑿 |𝜹𝒖′ |2 vanishes), in which case192

3.2 reduces to193

∇𝒓 .𝜹𝒖
′ |𝒖′

𝑿 |2 = −∇𝒓 .𝜹𝒖
′ |𝜹𝒖′ |2. (3.3)194

Under such statistical homogeneity conditions (note that the terms involving pressure195
fluctuations in equations 2.4 and 2.8 are derivatives with respect to X of third order196
fluctuating velocity statistics given the Poisson equation relating pressure and velocities),197
and by considering scales |r| large enough to neglect viscous diffusion, fluctuating energy198
equations 2.4 and 2.8 become, respectively,199

𝒖𝑿 .∇𝑿 |𝜹𝒖′ |2 + ∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) ≈ −𝜖 ′ (3.4)200

and201

𝒖𝑿 .∇𝑿 |𝒖′
𝑿 |2 + ∇𝒓 .(𝜹𝒖′ |𝒖𝑿

′ |2) ≈ −𝜖 ′ (3.5)202

where 𝜖 ′ is the average turbulence dissipation rate. Kolmogorov’s small-scale stationarity203

hypothesis adapted to these equations states that 𝒖𝑿 .∇𝑿 |𝜹𝒖′ |2 is much smaller in magnitude204
than 𝜖 ′ at small enough scales |r|. With this hypothesis it follows that205

∇𝒓 .𝜹𝒖
′ |𝜹𝒖′ |2 ≈ −𝜖 ′, (3.6)206

207

∇𝒓 .𝜹𝒖
′ |𝒖′

𝑿 |2 ≈ 𝜖 ′ (3.7)208

and209

𝒖𝑿 .∇𝑿 |𝒖′
𝑿 |2 ≈ −2𝜖 ′ (3.8)210

in an intermediate range of scales large enough to neglect viscous diffusion and small211
enough to neglect small-scale non-stationarity. Relation 3.6 is Kolmogorov’s scale-by-scale212
equilibriumand relation 3.7was first derived byGermano (2007). (Hosokawa (2007) assumed213
isotropy and derived the equivalent of 3.7 for homogeneous isotropic turbulence).214
Turbulence is rarely homogeneous. Therefore, the natural question to ask is whether energy215

transfer balances which may be different from but nevertheless in the same spirit as 3.6 and216
3.7 exist in non-homogeneous turbulence. And if they do, how different are they and what217
determines the difference?218
Various different classes of non-homogeneity exist. Apostolidis et al. (2023) developed219

a scale-by-scale turbulent kinetic energy balance theory for the intermediate layer of fully220
developed turbulent channel flow where interspace turbulent transport rate and two-point221
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pressure-velocity transport are negligible but small-scale production is not. A theory of scale-222
by-scale turbulent kinetic energy for non-homogeneous turbulence was recently proposed223
by Chen & Vassilicos (2022) who’s approach allowed them to treat equation 2.4 when224
small-scale interspace turbulent transport and spatial gradients of two-point pressure-velocity225
correlations are not negligible. In the present paper we study the turbulent flow under the226
rotating blades in a baffled container (mixer) where the baffles break the rotation in the flow227
and enhance turbulence.We start by assessing two-point production to determine whether we228
need to take it into account when applying the theory of Chen&Vassilicos (2022) to equation229
2.4. Even if 𝑃𝑟 and 𝑃𝑠

𝑋𝑟
are negligible, large-scale two-point production is necessarily present230

at some scales if one-point production is present in the flow.231
In the following section we present our experiment and the Particle Image Velocimetry232

used to make the measurements which we use in subsequent sections to estimate various233
terms in equations 2.4 and 2.8.234

4. Experimental measurements235

4.1. Description of the mixer and experimental configurations236

Experiments are performed with water in the same octagonal shaped, acrylic tank used in237
(Steiros et al. (2017a), Steiros et al. (2017b)). The impeller has a radial four-bladed flat238
blade turbine, mounted on a stainless steel shaft at the tank’s mid-height. The impellers are239
driven by a stepper motor (Motion Control Products, UK) in microstepping mode (25, 000240
steps per rotation), to ensure smooth movement, which is controlled by a function generator241
(33600A, Agilent, US). The rotation speed and torque signal are measured with the Magtrol242
torquemeter TS 106/011. The dimensions of the mixer are presented in figure 2 where243
𝐷𝑇 = 𝐻 = 45𝑐𝑚, 𝐶 = 𝐻/2 and 𝐷 ≈ 𝐷𝑇/2.244
Baffles (vertical bars on the sides of the tank) are used to break the rotation of the flow245

(figure 3). These baffles are designed based on the prescriptions of Nagata (1975) for close246
to fully baffled conditions which maximize power consumption and minimize rotation. For247
a circular tank, this condition is achieved with four baffles of width around 0.12𝐷𝑇 where248
𝐷𝑇 is the tank diameter (see 𝐷𝑇 in figure 2). Therefore, four baffles of mixer tank height and249
58mm width are used.250
To test the robustness of our results we run experiments with two different types of blade251

geometry which stimulate the turbulence differently: rectangular blades of 44𝑚𝑚 × 99𝑚𝑚252
size (figure 4a) and fractal-like/multiscale blades (figure 4b) of the exact same frontal area253
44 × 99𝑚𝑚2 but much longer perimeter. This blade difference affects turbulence properties254
substantially as the resulting turbulence dissipation rate differs by 30% to 40% at equal255
rotation speed (see table 3).We use here the two-iteration ’fractal2’ blade described in Steiros256
et al. (2017b) and shown in figure 4b. Each one of the two types of blade is tested with two257
different rotor speeds. We therefore conduct experiments in four different configurations. In258
all cases, the water is filled to the top of the sealed container to minimise the presence of air259
bubbles in the water.260

4.2. Particle Image Velocimetry settings261

We use 2D2C PIV in the vertical (𝑥, 𝑧) plane indicated in figure 5. This figure also shows the262
field of view which is aligned with that vertical plane and has its centre offset by only 3mm263
+/-1mm in the 𝑦 direction from the centreline.264
The PIV set up is composed of a camera, a laser, a set of lenses and mirrors to shape the265

laser beam into a thin light sheet and a Lavision PTU synchronisation unit and a recording266
computer with Davis 10 from Lavision.267
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D

(b)

Figure 2: Mixer dimensions. Figures modified from Steiros et al. (2017b)

(a) Mixing tank with baffles
Baffles

(b) Top view of baffles

Figure 3: Mixer baffles

(a) Rectangular blade (b) Fractal-like blade

Figure 4: Mixer blades

4.2.1. Camera268

The camera used is the Phantom v2640 with full sensor image (2048𝑝𝑥 × 1952𝑝𝑥). A Nikon269
macro Nikkor 200mm lens is used with f#8. The extremity of the lens is at 93 mm from the270
glass. The field of view size is 𝐶1 ×𝐶2 ≈ 27𝑚𝑚 × 28𝑚𝑚 (see figure 5) with a magnification271
factor of 14.1𝜇𝑚/𝑝𝑥.272
The acquisition is done by packets of five time-resolved images. The packet acquisition273

frequency is 6Hz to ensure decorrelation between successive packets. The acquisition274
frequency for the five images within each packet varies from 1.25kHz to 3kHz depending275
on type of blade and rotor speed. This parameter is specifically set for each configuration to276
ensure a turbulent fluctuation displacement between two frames of around 5px (corresponding277
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Figure 5: Measurement plane location

to about 1 standard deviation) and maximum 10px (observed with samples during the278
experiments).279

4.2.2. Laser, mirrors and lenses280

The laser used is the Blizz 30W high speed frequency laser from InnoLas. The laser is281
optimized at 40kHz with 750𝜇𝐽/𝑝𝑢𝑙𝑠𝑒 at 532𝑛𝑚 wavelength and 𝑀2 < 1.3. For the282
experiments it was set to around 500𝜇𝐽/𝑝𝑢𝑙𝑠𝑒 because of the smaller frequency used.283
The laser frequency is set according to the camera time-resolved recording frequency. The284
focal lengths of the spherical and the cylindrical lenses are +800mm and -80mm respectively285
(beam-waist set in the centre of field of view). The laser sheet height obtained is around286
60mm and its width is 0.6mm at the waist (which is close to the centerline of the mixer) with287
a Rayleigh length of 400 mm. Therefore, the laser sheet’s width is constant over the field of288
view.289

4.2.3. Seeding290

Mono-disperse polystyrene particles Spherotech of diameter 5.33𝜇𝑚 are used. They max-291
imise the concentration in the flow and lead to enough particles within each interrogation292
window. The background noise is around 30 counts. There are on average about 10 particles293
per interrogation window of 32𝑝𝑥 × 32𝑝𝑥 if a threshold of 50 counts is used to select294
most particles. This is consistent with the criteria of Keane & Adrian (1991). Among these295
particles, there is on average 6.5 particles higher than 100 counts per interrogation window.296

4.2.4. Processing297

The calibration is done with LaVision 058-5 plate. The PIV processing is done with the298
Matpiv toolbox modified at LMFL. It is a classical multigrid and multipass cross-correlation299
algorithm (Willert & Gharib (1991), Soria (1996)). Here four passes are used, starting with300
64𝑝𝑥 × 64𝑝𝑥 then, 48𝑝𝑥 × 48𝑝𝑥 and finishing with two 32𝑝𝑥 × 32𝑝𝑥 passes. Before the final301
pass, image deformation is used to improve the results (Scarano (2001), Lecordier & Trinité302
(2004)). An overlap between IW of 62% is used, leading to vector spacing of about 0.17mm.303
The final grid has then 159 points in the horizontal direction and 167 in the vertical one.304

4.3. Description of the experimental measurements305

4.3.1. PIV resolution306

The PIV resolution of the experiment (i.e. interrogation window size) is presented in table307
1. In terms of the Kolmogorov length 𝜂 ≡ (𝜈3/⟨𝜖 ′⟩)1/4, where the angular brackets signify a308
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F (Hz) Magnification (microm/px) Window size (mm) Window size/ 𝜂
Rectangular blades 1 14 0.45 4.1
Rectangular blades 1.5 14 0.45 5.1
Fractal blades 1 14 0.45 3.4
Fractal blades 1.5 14 0.45 4.4

Table 1: PIV resolution

space-average over the PIV field of view, the resolution is between 3.4𝜂 and 5.1𝜂 depending309
on configuration. For those configurations where the interrogation window size is higher310
than 3𝜂 the turbulence dissipation rate might be underestimated when denoised properly311
(Foucaut et al. (2021)). However, this underestimation remains acceptable for interrogation312
window size smaller than 5𝜂 where less than 30 % of uncertainty (filtering effect) is expected313
according to Laizet et al. (2015) and Lavoie et al. (2007).314

4.3.2. Statistical convergence315

For each configuration, 150 000 velocity fields are recorded in time including 50 000 fully316
uncorrelated velocity field samples for convergence. Averaging over time is not sufficient for317
convergence and we therefore also apply averaging over space which greatly improves it. It318
corresponds to 150000× 164× 78 ≈ 1.9× 109 points for one-point statistics where 164× 78319
is the number of points associated with the vector spacing. For two-point statistics, some320
spatial points are not available depending on the separation vector size and direction. For321
zero separation vector, 150000 × 164 × 78 ≈ 1.9 × 109 points are available for convergence322
but for the largest separation vector in 𝑟𝑥 direction there are only 150000 × 164 ≈ 2.4 × 107323
points available and in 𝑟𝑧 direction only 150000 × 78 ≈ 1.2 × 107 are available.324
The most important results in this paper are reported with error bars quantifying conver-325

gence and computed with a bootstrapping method. The central limit theorem is applied to326
averages over sub-groups of samples of the quantity of interest. For each quantity, 600 sub-327
groups containing 83 time steps with at least 159 spatial points are used for the computation328
of an error bar. This method is robust and provides accurate estimations without having to329
define the number of independent points. The resulting error bars are also representative330
of the convergence of third order two-point statistics plotted here without error bars as the331
number of points used is the same.332

4.3.3. Peak-locking333

When a particle is too small, its correlation peak position fit results are biased towards integer334
values. Therefore, the displacement between two images ismore likely to be an integer number335
of pixels. This peak-locking error (as it is called, Raffel et al. (2018)) is systematic (bias error)336
and is therefore visible on the velocity probability distribution functions (sine modulation)337
but does not usually impact mean quantities of turbulent flow if enough dynamic is used338
(here high dynamic is selected of about 5px for one standard deviation, see Christensen339
(2004)). Peak-locking can be reduced by increasing particles diffraction spot using camera340
lens aperture F#. However, an increased F# reduces the brightness of the particles and341
therefore the number of visible particles. In this experiment, F#8 is used as a compromise342
and some peak locking is still visible. The impact on the results is analyzed in appendix A.3343
where we show that energy spectra and averages of two-point velocity quantities such as the344
interscale turbulent energy transfer rate are unaffected by peak-locking.345

Rapids articles must not exceed this page length
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Figure 6: (a): Schematic of mean flow in a mixer with baffles (Nagata (1975)). (b): Mean
flow measurement within the measurement plane shown as a green square in (a).

4.3.4. Defining parameters346

The defining parameters of the experiment are presented in table 2. The rotation frequency𝐹 is347

either 1Hz or 1.5Hz. The globalReynolds number is 𝑅𝑒 = 2𝜋𝐹𝑅2

𝜈
. where 𝑅 = 𝐷/2 ≈ 11.25𝑐𝑚348

is an estimate of the rotor radius. 𝑅𝑒 is large, higher than 8.104, and the flow is therefore349
turbulent.350
The Rossby number is estimated as 𝑅𝑜 = 𝑈

2Ω𝑅
where𝑈 (following Baroud et al. (2002)) is351

the maximum fluctuating velocity in all our samples, 𝑅 stands in as an estimate of the integral352
length scale of the turbulence and Ω = 2𝜋𝐹. Our values of 𝑅𝑜 range between 10−1 and 1353
and are therefore intermediate between fast rotating and non-rotating turbulence. However,354
the rotor rotation speed Ω is not representative of flow rotation because the baffles break355
the flow rotation as explained in Nagata (1975). Therefore, the Rossby number is probably356
severely underestimated and the rotation is not expected to affect significantly the turbulence357
behavior in our experiment.358

4.3.5. Basic turbulent flow properties359

The main turbulent parameters are presented in table 3. They include the turbulence360
dissipation rate ⟨𝜖 ′⟩ averaged over time (overbar) and over space in our field of view (brackets),361
the resulting Kolmogorov length-scale 𝜂 (computed with ⟨𝜖 ′⟩) and the Taylor length 𝜆. These362
parameters are provided as reference and are used in the paper to non-dimensionalise results.363
The Taylor length-based Reynolds number 𝑅𝑒𝜆 (see discussion on its estimation in364

Appendix A.2) is higher than 480 in all four configurations. All the four flows that we365
study are therefore highly turbulent.366
In figure 6b we plot the mean flow velocity for one of our four configurations but the plot is367

representative of all four configurations. The mean flow velocity is oriented vertically from368
bottom to top and is not negligible in magnitude. Within our field of view, it is horizontaly369
uniform and accelerates by about 7% from bottom to top. These observations are consistent370
with the overall mean flow structure identified by Nagata (1975) and shown in figure 6a.371

4.3.6. 2D2C truncations and estimates of 3D3C statistics372

The various terms in the equations of the previous sections require three-component (3C)373
velocity fields in three-dimensional (3D) space to be calculated. However, our measurements374
are performed with 2D2C PIV. We can therefore only calculate 2D2C truncations of 3D3C375
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𝐹 (𝐻𝑧) Re vel rms (m/s) Ro Mean torque (N.m)
Rectangular blades 1 9.8 × 104 1.0 × 10−1 3.6 × 10−1 5.3 × 10−1
Rectangular blades 1.5 1.3 × 105 1.6 × 10−1 4.0 × 10−1 1.1
Fractal blades 1 8.6 × 104 9.1 × 10−2 3.2 × 10−1 4.1 × 10−1
Fractal blades 1.5 1.2 × 105 1.4 × 10−1 3.4 × 10−1 8.1 × 10−1

Table 2: Main parameters of the experiment: vel rms (m/s) stands for
√︃
< 𝑢′2𝑥 > + < 𝑢′2𝑧 >

𝐹 (𝐻𝑧) ⟨𝜖 ′⟩ (𝑚2/𝑠3) 𝜂(𝑚) 𝜆(𝑚) 𝑅𝑒𝜆

Rectangular blades 1 3.6 × 10−3 1.1 × 10−4 4.1 × 10−3 5.1 × 102
Rectangular blades 1.5 1.2 × 10−2 8.8 × 10−5 3.7 × 10−3 6.5 × 102
Fractal blades 1 2.4 × 10−3 1.3 × 10−4 4.9 × 10−3 4.8 × 102
Fractal blades 1.5 8.2 × 10−3 1.0 × 10−4 4.1 × 10−3 5.8 × 102

Table 3: Main turbulence parameters. The Kolmogorov length scale is calculated as
𝜂 ≡ (𝜈3/⟨𝜖 ′⟩)1/4. The Taylor length and the Reynolds number 𝑅𝑒𝜆 are calculated as in

Appendix A.2

statistics and in a few cases (section 5 and section 6) we estimate 2D2C surrogates of 3D3C376
terms.377

5. Two-point turbulence production rates378

We start our data analysis with an assessment of two-point turbulence production rates. We379
define our coordinate system such that components 𝑖 = 1, 𝑖 = 2 and 𝑖 = 3 correspond380
to the 𝑥, 𝑦 and 𝑧 directions respectively and therefore (𝑟1, 𝑟2, 𝑟3) = (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) and381

(𝑋1, 𝑋2, 𝑋3) = (𝑋𝑥 , 𝑋𝑦 , 𝑋𝑧). The sums defining 𝑃𝑟 = −𝛿𝑢′
𝑗
𝛿𝑢′

𝑖
𝜕𝛿𝑢𝑖
𝜕𝑟 𝑗
, 𝑃𝑠

𝑋𝑟
= −𝑢′

𝑋 𝑗
𝛿𝑢′

𝑖
𝜕𝛿𝑢𝑖
𝜕𝑋 𝑗
,382

𝑃𝑋 = −𝑢′
𝑋 𝑗
𝑢′
𝑋𝑖

𝜕𝑢𝑋𝑖

𝜕𝑋 𝑗
and 𝑃𝑙

𝑋𝑟
= −𝛿𝑢′

𝑗
𝑢′
𝑋𝑖

𝜕𝛿𝑢𝑖
𝜕𝑋 𝑗
are sums of nine terms of which our 2D2C PIV383

has access to four. Our data therefore allow only truncations to be calculated directly and we384
start with the truncation of 𝑃𝑟 :385

𝑃𝑟 = 𝛿𝑢′𝑥𝛿𝑢
′
𝑥

𝜕𝛿𝑢𝑥

𝜕𝑟𝑥
+ 𝛿𝑢′𝑥𝛿𝑢

′
𝑧

𝜕𝛿𝑢𝑧

𝜕𝑟𝑥
+ 𝛿𝑢′𝑧𝛿𝑢

′
𝑥

𝜕𝛿𝑢𝑥

𝜕𝑟𝑧
+ 𝛿𝑢′𝑧𝛿𝑢

′
𝑧

𝜕𝛿𝑢𝑧

𝜕𝑟𝑧
(5.1)386

with 𝛿𝑢′𝑦𝛿𝑢
′
𝑦
𝜕𝛿𝑢𝑦

𝜕𝑟𝑦
+ 𝛿𝑢′𝑥𝛿𝑢

′
𝑦
𝜕𝛿𝑢𝑦

𝜕𝑟𝑥
+ 𝛿𝑢′𝑥𝛿𝑢

′
𝑦
𝜕𝛿𝑢𝑥

𝜕𝑟𝑦
+ 𝛿𝑢′𝑧𝛿𝑢

′
𝑦
𝜕𝛿𝑢𝑦

𝜕𝑟𝑧
+ 𝛿𝑢′𝑧𝛿𝑢

′
𝑦
𝜕𝛿𝑢𝑧
𝜕𝑟𝑦

being the387

difference between 𝑃𝑟 and 𝑃𝑟 . We know from our measurements and from Nagata (1975)388
that themean flow is vertical in our field of viewwhich is small and very close to the centreline389

of the tank. Hence, we can readily neglect all the terms making the difference between 𝑃𝑟390

and 𝑃𝑟 except 𝛿𝑢′𝑧𝛿𝑢′𝑦
𝜕𝛿𝑢𝑧
𝜕𝑟𝑦
. Making the assumption that 𝛿𝑢′𝑧𝛿𝑢′𝑦

𝜕𝛿𝑢𝑧
𝜕𝑟𝑦

≈ 𝛿𝑢′𝑧𝛿𝑢
′
𝑥
𝜕𝛿𝑢𝑧
𝜕𝑟𝑥

we391

form the following surrogate estimate of 𝑃𝑟 :392 ˜̃
𝑃𝑟 = 𝛿𝑢′𝑥𝛿𝑢

′
𝑥

𝜕𝛿𝑢𝑥

𝜕𝑟𝑥
+ 2𝛿𝑢′𝑥𝛿𝑢′𝑧

𝜕𝛿𝑢𝑧

𝜕𝑟𝑥
+ 𝛿𝑢′𝑧𝛿𝑢

′
𝑥

𝜕𝛿𝑢𝑥

𝜕𝑟𝑧
+ 𝛿𝑢′𝑧𝛿𝑢

′
𝑧

𝜕𝛿𝑢𝑧

𝜕𝑟𝑧
. (5.2)393
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Similarly, we have the following truncations and surrogate estimates for the other three394
two-point turbulence production rates:395

𝑃𝑠
𝑋𝑟

= 𝑢′
𝑋𝑥

𝛿𝑢′𝑥
𝜕𝛿𝑢𝑥

𝜕𝑋𝑥

+ 𝑢′
𝑋𝑥

𝛿𝑢′𝑧
𝜕𝛿𝑢𝑧

𝜕𝑋𝑥

+ 𝑢′
𝑋𝑧
𝛿𝑢′𝑥

𝜕𝛿𝑢𝑥

𝜕𝑋𝑧

+ 𝑢′
𝑋𝑧
𝛿𝑢′𝑧

𝜕𝛿𝑢𝑧

𝜕𝑋𝑧

(5.3)396

and397 ˜̃
𝑃𝑠
𝑋𝑟

= 𝑢′
𝑋𝑥

𝛿𝑢′𝑥
𝜕𝛿𝑢𝑥

𝜕𝑋𝑥

+ 2𝑢′
𝑋𝑥

𝛿𝑢′𝑧
𝜕𝛿𝑢𝑧

𝜕𝑋𝑥

+ 𝑢′
𝑋𝑧
𝛿𝑢′𝑥

𝜕𝛿𝑢𝑥

𝜕𝑋𝑧

+ 𝑢′
𝑋𝑧
𝛿𝑢′𝑧

𝜕𝛿𝑢𝑧

𝜕𝑋𝑧

; (5.4)398
399

𝑃𝑋 = 𝑢′
𝑋𝑥

𝑢′
𝑋𝑥

𝜕𝑢𝑋𝑥

𝜕𝑋𝑥

+ 𝑢′
𝑋𝑥

𝑢′
𝑋𝑧

𝜕𝑢𝑋𝑧

𝜕𝑋𝑥

+ 𝑢′
𝑋𝑧
𝑢′
𝑋𝑥

𝜕𝑢𝑋𝑥

𝜕𝑋𝑧

+ 𝑢′
𝑋𝑧
𝑢′
𝑋𝑧

𝜕𝑢𝑋𝑧

𝜕𝑋𝑧

(5.5)400

and401 ˜̃
𝑃𝑋 = 𝑢′

𝑋𝑥
𝑢′
𝑋𝑥

𝜕𝑢𝑋𝑥

𝜕𝑋𝑥

+ 2𝑢′
𝑋𝑥

𝑢′
𝑋𝑧

𝜕𝑢𝑋𝑧

𝜕𝑋𝑥

+ 𝑢′
𝑋𝑧
𝑢′
𝑋𝑥

𝜕𝑢𝑋𝑥

𝜕𝑋𝑧

+ 𝑢′
𝑋𝑧
𝑢′
𝑋𝑧

𝜕𝑢𝑋𝑧

𝜕𝑋𝑧

; (5.6)402

𝑃𝑙
𝑋𝑟

= 𝛿𝑢′𝑥𝑢
′
𝑋𝑥

𝜕𝛿𝑢𝑥

𝜕𝑟𝑥
+ 𝛿𝑢′𝑥𝑢

′
𝑋𝑧

𝜕𝛿𝑢𝑧

𝜕𝑟𝑥
+ 𝛿𝑢′𝑧𝑢

′
𝑋𝑥

𝜕𝛿𝑢𝑥

𝜕𝑟𝑧
+ 𝛿𝑢′𝑧𝑢

′
𝑋𝑧

𝜕𝛿𝑢𝑧

𝜕𝑟𝑧
(5.7)403

and404 ˜̃
𝑃𝑙
𝑋𝑟

= 𝛿𝑢′𝑥𝑢
′
𝑋𝑥

𝜕𝛿𝑢𝑥

𝜕𝑟𝑥
+ 2𝛿𝑢′𝑥𝑢′𝑋𝑧

𝜕𝛿𝑢𝑧

𝜕𝑟𝑥
+ 𝛿𝑢′𝑧𝑢

′
𝑋𝑥

𝜕𝛿𝑢𝑥

𝜕𝑟𝑧
+ 𝛿𝑢′𝑧𝑢

′
𝑋𝑧

𝜕𝛿𝑢𝑧

𝜕𝑟𝑧
. (5.8)405

We calculate space averages over the field of view of the four truncated and the four406
surrogate two-point production rates in the eight equations above. In figures 7,8, 9 and 10407
we plot, versus 𝑟1 ≡ 𝑟𝑥 and 𝑟3 ≡ 𝑟𝑧 , the four average surrogate two-point production rates408

⟨˜̃𝑃𝑟 ⟩, ⟨
˜̃
𝑃𝑙
𝑋𝑟
⟩, ⟨˜̃𝑃𝑋⟩ and ⟨˜̃𝑃𝑙

𝑋𝑟
⟩ where the brackets signify space-averaging. We plot them409

normalised by ⟨𝜖 ′ ⟩
2 where 𝜖

′ ≡ 𝜈
𝜕𝑢′

𝑖

𝜕𝜁 𝑗

𝜕𝑢′
𝑖

𝜕𝜁 𝑗
is estimated on the basis of our 2D2C PIV data using410

its axisymmetric formulation (see Appendix A.1 where we also report that we did not find411
very significant differences in the values of ⟨𝜖 ′⟩ calculated either on the basis of small-scale412

axisymmetry or on the basis of small-scale isotropy). ⟨𝜖 ′ ⟩
2 is used to non-dimensionalize413

results instead of ⟨𝜖 ′⟩ because the turbulence dissipation term in equation 2.4, once averaged414

in space, is < 𝜈
4
𝜕𝑢′+

𝑖

𝜕𝜁 +
𝑘

𝜕𝑢′+
𝑖

𝜕𝜁 +
𝑘

+ 𝜈
4
𝜕𝑢′−

𝑖

𝜕𝜁 −
𝑘

𝜕𝑢′−
𝑖

𝜕𝜁 −
𝑘

>≈ 1
2 < 𝜖 ′ >.415

In the plots in figures 7 and 8, ⟨˜̃𝑃𝑟 ⟩ is relatively small and ⟨˜̃𝑃𝑠
𝑋𝑟
⟩ is negligible, irrespective416

of experimental configuration, for most values of 𝑟𝑥 and 𝑟𝑧 that our field of view allows us to417

access. Plots, not shown here for economy of space, of the corresponding truncations ⟨𝑃𝑟 ⟩418

and ⟨𝑃𝑠
𝑋𝑟
⟩ are very similar. The largest absolute values of ⟨˜̃𝑃𝑟 ⟩ are obtained at relatively419

large scales 𝑟𝑧 = 5𝜆 ≈ 𝑅/5 with values around 0.15 ⟨𝜖 ′ ⟩
2 which is not negligible but still420

relatively small. These values decrease with decreasing two-point separation lengths as ⟨˜̃𝑃𝑟 ⟩421

tends to zero when 𝒓 tends to zero. Furthermore, the increase of ⟨˜̃𝑃𝑟 ⟩ with increasing two-422
point separation is also much smaller than the increase of two-point turbulence production in423
the intermediate layer of fully developed turbulent channel flow found by Apostolidis et al.424
(2023). We are therefore encouraged to hypothesise that two-point turbulence production by425
meanflownon-homogeneities at small scales and cross-scale two-point turbulence production426
are negligible in the small-scale energy equation 2.4 for the present turbulent flows.427
Looking at figure 10, we can equally hypothesise that cross-scale two-point production is428

also negligible in the large-scale energy equation 2.8, and a similar conclusion arises from429
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Figure 7: Production surrogate defined in equation 5.2 along two radial directions

respective plots of the average surrogate ⟨𝑃𝑙
𝑋𝑟
⟩ (not shown given the very close resemblance430

with figure 10). However, unlike ⟨˜̃𝑃𝑟 ⟩, ⟨𝑃𝑟 ⟩, ⟨
˜̃
𝑃𝑙
𝑋𝑟
⟩, ⟨𝑃𝑙

𝑋𝑟
⟩, ⟨˜̃𝑃𝑙

𝑋𝑟
⟩ and ⟨𝑃𝑙

𝑋𝑟
⟩ which are all431

close to zero over a wide range of scales 𝑟𝑥 and 𝑟𝑧 for all four experimental configurations,432

⟨˜̃𝑃𝑋⟩ and ⟨𝑃𝑋⟩ do not decrease towards 0 with decreasing two-point separation and can433

even be comparable to ⟨𝜖 ′ ⟩
2 at the very smallest separations. Figure 9 shows this clearly for434

⟨˜̃𝑃𝑋⟩ and the corresponding plots (not shown here) for ⟨𝑃𝑋⟩ are qualitatively similar but435

with different quantitative values. In particular, ⟨˜̃𝑃𝑋⟩ and ⟨𝑃𝑋⟩ do not tend to zero as r tends436

to 0 in agreement with the point made in section 2 that 𝑃𝑋 tends to −𝑢′𝑗𝑢′𝑖Σ𝑖 𝑗 in the limit437

r → 0 and therefore does not tend to zero if there is non-vanishing one-point turbulence438

production present in the flow. However, the ratios 2⟨˜̃𝑃𝑋⟩/⟨𝜖 ′⟩ and 2⟨𝑃𝑋⟩/⟨𝜖 ′⟩ differ between439
configurations, and in particular for different types of blade, suggesting that there are non-440
homogeneity differences between the four configurations considered here. In spite of these441

differences, ⟨˜̃𝑃𝑋⟩ and ⟨𝑃𝑋⟩ are typically negative in all confugurations suggesting that energy442
is transferred from the fluctuations to the mean.443
Overall, our data support the hypothesis that, for the turbulent flows considered here and444

for scales small enough compared to the flow’s large scales, two-point production may be445
neglected in the small-scale energy equation 2.4 even if 𝑃𝑋 cannot be neglected in the446
large-scale energy equation 2.8. This is not a trivial hypothesis because 𝑃𝑟 was found by447
Apostolidis et al. (2023) not to be negligible at scales comparable to and larger than the448
Taylor length in the intermediate layer of fully developed turbulent channel flow where the449
turbulence is also non-homogeneous.450

6. Small scale linear transport terms451

Given the previous section’s conclusion which encourages us to neglect two-point production452
in the small-scale energy equation 2.4 but not in the large-scale energy equation 2.8,453
we now focus on equation 2.4 and ask whether we can justify simplifying it further by454

neglecting the linear transport rate (𝒖𝑿 .∇𝑿 + 𝜹𝒖.∇𝒓 ) 12 |𝜹𝒖
′ |2. Once again, with our 2D2C455

PIV data, we can only consider a truncation and a surrogate estimate. The truncation456
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Figure 8: Production surrogate defined in equation 5.4 along two radial directions
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Figure 9: Production surrogate defined in equation 5.6 along two radial directions

is
(
𝑢𝑋𝑥

𝜕
𝜕𝑋𝑥

+ 𝑢𝑋𝑧
𝜕

𝜕𝑋𝑧
+ 𝛿𝑢𝑥

𝜕
𝜕𝑟𝑥

+ 𝛿𝑢𝑧
𝜕
𝜕𝑟𝑧

)
1
2

(
𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧

)
and the surrogate estimate is457

obtained by making the assumptions 𝛿𝑢′2𝑥 = 𝛿𝑢′2𝑦 , 𝑢𝑋𝑥
𝜕

𝜕𝑋𝑥

1
2 |𝜹𝒖

′ |2 = 𝑢𝑋𝑦
𝜕

𝜕𝑋𝑦

1
2 |𝜹𝒖

′ |2 and458

𝛿𝑢𝑥
𝜕

𝜕𝑟𝑥

1
2 |𝜹𝒖

′ |2 = 𝛿𝑢𝑦
𝜕
𝜕𝑟𝑦

1
2 |𝜹𝒖

′ |2. Our surrogate estimate of (𝒖𝑿 .∇𝑿 + 𝜹𝒖.∇𝒓 ) 12 |𝜹𝒖
′ |2 is459

therefore
(
2𝑢𝑋𝑥

𝜕
𝜕𝑋𝑥

+ 𝑢𝑋𝑧
𝜕

𝜕𝑋𝑧
+ 2𝛿𝑢𝑥 𝜕

𝜕𝑟𝑥
+ 𝛿𝑢𝑧

𝜕
𝜕𝑟𝑧

)
1
2

(
2𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧

)
.460

We calculate space-averages of the truncation and the surrogate estimate in two parts:461

i.e. ⟨
(
𝑢𝑋𝑥

𝜕
𝜕𝑋𝑥

+ 𝑢𝑋𝑧
𝜕

𝜕𝑋𝑧

)
1
2

(
𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧

)
⟩ and ⟨

(
𝛿𝑢𝑥

𝜕
𝜕𝑟𝑥

+ 𝛿𝑢𝑧
𝜕
𝜕𝑟𝑧

)
1
2

(
𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧

)
⟩ for the462

truncation, and for the surrogate estimate ⟨
(
2𝑢𝑋𝑥

𝜕
𝜕𝑋𝑥

+ 𝑢𝑋𝑧
𝜕

𝜕𝑋𝑧

)
1
2

(
2𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧

)
⟩ and463

⟨
(
2𝛿𝑢𝑥 𝜕

𝜕𝑟𝑥
+ 𝛿𝑢𝑧

𝜕
𝜕𝑟𝑧

)
1
2

(
2𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧

)
⟩. Both parts of the space-average truncation and of464

the space-average surrogate are relatively small compared to ⟨𝜖 ′⟩/2 over a significant range465
of scales in all four configurations, increasing slowly in magnitude with increasing |𝒓 | and466
reaching at 𝑟𝑧 = 6.8𝜆 ≈ 0.3𝑅 a value of 0.23⟨𝜖 ′⟩/2 for the conservative surrogate estimate467
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Figure 10: Production surrogate defined in equation 5.8 along two radial directions

and of 0.14⟨𝜖 ′⟩/2 for the truncation. In figures 11a, 11b, 12a and 12b we plot the two468
space-average surrogate parts normalised by ⟨𝜖 ′⟩/2 versus 𝑟𝑥 and 𝑟𝑧 .469

There are therefore grounds to support the additional hypothesis that (𝒖𝑿 .∇𝑿 + 𝜹𝒖.∇𝒓 ) 12 |𝜹𝒖
′ |2470

might also be neglected from the small-scale energy equation 2.4 at small enough scales.471
We therefore consider the following simplified form of this equation for the turbulent flow472
region studied here:473

∇𝑿 .(𝒖𝑿
′ |𝜹𝒖′ |2) + ∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) + 2∇𝑿 .(𝜹𝒖′𝛿𝑝′) ≈ 𝜈

2
(∇𝑿

2 + ∇𝒓
2) |𝜹𝒖′ |2 − 1

2

(
𝜖 ′+ + 𝜖 ′−

)
(6.1)474

where 𝜖 ′+ and 𝜖 ′− are 𝜖 ′ at 𝜻+ and 𝜻− respectively. Note, however, that this additional hypoth-475

esis concerning (𝒖𝑿 .∇𝑿 + 𝜹𝒖.∇𝒓 ) 12 |𝜹𝒖
′ |2 is in fact not crucial because the conclusions of476

the following two sections can also be obtained without it (with the only potential exception477
of the last sentence of subsection 8.4 which may need to be qualified).478
It is worth pointing out that a careful look at all figures 7,8, 9 and 10 as well as figure479

11a, 11b, 12a and 12b suggests that the approximation 6.1 does not necessarily hold for large480
enough values of 𝑟𝑥 and/or 𝑟𝑧 . We chose to normalise 𝑟𝑥 and 𝑟𝑧 by 𝜆 in all these figures for481
comparison with Apostolidis et al. (2023) who found, in a very different non-homogeneous482
turbulent flow (namely the intermediate region of fully developed turbulent channel flow),483
that equation 6.1 is not a good approximation at scales comparable to and larger than 𝜆484
whereas we do assume it to be a good approximation at such scales (if they are not too large)485
in the flow region of the non-homogeneous turbulent flows considered here.486

7. Second order structure functions487

We now adopt the approach of Chen & Vassilicos (2022) which is based on inner and outer488
similarity. In effect, we assume that regions of space exist in the flow where the non-linear489
and non-local dynamics of the small-scale turbulence are similar at different places within490
the region. We therefore start with an hypothesis of inner and outer similarity for the second491

order structure function |𝜹𝒖′ |2, namely492

|𝜹𝒖′ |2 = 𝑉2𝑂2(𝑿) 𝑓𝑂2
(
𝒓

𝑙𝑂

)
(7.1)493
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Figure 11: Surrogate of rate of linear transport in scales in equation 2.4
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Figure 12: Surrogate of rate of linear transport in space in equation 2.4

for |𝒓 | ≫ 𝑙𝐼 and494

|𝜹𝒖′ |2 = 𝑉2𝐼2(𝑿) 𝑓𝐼2
(
𝒓

𝑙𝐼

)
(7.2)495

for |𝒓 | ≪ 𝑙𝑂, where the inner length-scale 𝑙𝐼 depends on viscosity and is much smaller than496
the outer length-scale 𝑙𝑂 which does not depend on viscosity, i.e. 𝑙𝐼 = 𝑙𝐼 (𝑿) ≪ 𝑙𝑂 = 𝑙𝑂 (𝑿)497
for large enough Reynolds number. The outer length scale can be thought of as an integral498
length of the order of the blade size 𝑅 = 𝐷/2 and is assumed to be smaller than the extent of499
the similarity region where (7.1) and (7.2) hold. Statistical homogeneity is a special case of500
our inner and outer similarity hypotheses where 𝑉𝑂2, 𝑉𝐼2, 𝑙𝑂 and 𝑙𝐼 are independent of 𝑿. In501
the following section we apply the approach of Chen & Vassilicos (2022) to the small-scale502
energy balance 6.1.503
It is natural to expect the outer characteristic velocity 𝑉𝑂2 to be independent of viscosity504

but the inner characteristic velocity 𝑉𝐼2 to depend on it. The ratios 𝑉𝐼2/𝑉𝑂2 and 𝑙𝐼/𝑙𝑂505
must therefore be functions of a local Reynolds number 𝑅𝑒𝑂 = 𝑉𝑂2𝑙𝑂/𝜈 and we write506
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𝑉𝐼2/𝑉𝑂2 = 𝑔2(𝑅𝑒𝑂, 𝑿), 𝑙𝐼/𝑙𝑂 = 𝑔𝑙 (𝑅𝑒𝑂, 𝑿), these two functions having to tend to zero as507
𝑅𝑒𝑂 tends to infinity.508
The inner and outer similarity forms overlap in the range 𝑙𝐼 ≪ |𝒓 | ≪ 𝑙𝑂, hence509

𝑓𝑂2

(
𝒓

𝑙𝑂

)
= 𝑔22 (𝑅𝑒𝑂, 𝑿) 𝑓𝐼2

(
𝒓

𝑙𝑂
𝑔−1𝑙

)
(7.3)510

in this intermediate range. Given that the left hand side of this equation does not depend on511
𝑅𝑒𝑂, the derivative with respect to 𝑅𝑒𝑂 of the right hand side cancels and we obtain512

𝑔𝑙
𝑑𝑔22
𝑑𝑅𝑒𝑂

𝑓𝐼2(𝝆) = 𝑔22
𝑑𝑔𝑙

𝑑𝑅𝑒𝑂
𝜌 𝑗

𝜕

𝜕𝜌 𝑗

𝑓𝐼2(𝝆) (7.4)513

where there is an implicit sum over 𝑗 = 1, 2, 3 and 𝝆 = (𝜌1, 𝜌2, 𝜌3) = 𝒓/𝑙𝐼 . It follows514
that 𝜌 𝑗

𝜕
𝜕𝜌 𝑗

𝑓𝐼2(𝝆) is proportional to 𝑓𝐼2(𝝆). To solve for 𝑓𝐼2 we adopt spherical coordinates515

(𝜌, 𝜃, 𝜙) for 𝝆, where 𝜃 varies from 0 to 𝜋 and vanishes if 𝝆 is aligned with the 𝑦 axis516
and where 𝜙 varies from 0 to 2𝜋 and is equal to 0 or 𝜋/2 if 𝝆 is aligned with the 𝑥517
or the 𝑧 axis respectively. The proportionality between 𝜌 𝑗

𝜕
𝜕𝜌 𝑗

𝑓𝐼2(𝝆) and 𝑓𝐼2(𝝆) becomes518

𝑛 𝑓𝐼2(𝜌, 𝜃, 𝜙) = 𝜌 𝜕
𝜕𝜌

𝑓𝐼2(𝜌, 𝜃, 𝜙) in terms of a dimensionless proportionality constant 𝑛 and519

the solution to this equation is520

𝑓𝐼2 = 𝜌𝑛𝐹 (𝜃, 𝜙) (7.5)521

where 𝐹 is an unknown function of angles 𝜃 and 𝜙. Note that 7.5 holds in the intermediate522
range 𝑙𝐼 ≪ |𝒓 | ≪ 𝑙𝑂. Returning to 7.3, we get523

𝑔22 (𝑅𝑒𝑂, 𝑿)𝑔
−𝑛
𝑙 (𝑅𝑒𝑂, 𝑿) = 𝐴1 (7.6)524

where the dimensionless coefficient 𝐴1 is independent of 𝑅𝑒𝑂 and 𝑿.525
At this stage we follow Chen & Vassilicos (2022) and use their hypothesis of inner-outer526

equivalence for dissipation according to which there is an inner and an outer way to estimate527
the turbulence dissipation rate: 𝜖 ′ ∼ 𝑉3

𝑂2/𝑙𝑂 ∼ 𝑉3
𝐼2/𝑙𝐼 where the proportionality coefficients528

are independent of 𝑅𝑒𝑂 but can depend on 𝑿.We actually derive this hypothesis in subsection529
8.3 and our derivation shows clearly that it has nothing to do with Kolmogorov’s scale-by-530
scale equilibrium. At this stage, it provides the additional constraint 𝑔32 (𝑅𝑒𝑂)𝑔

−1
𝑙

(𝑅𝑒𝑂) = 𝐴2531
where the coefficient 𝐴2 is independent of 𝑅𝑒𝑂. Combined with this additional constraint,532
7.6 yields 𝑛 = 2/3 (and 𝐴3 = 𝐴3/2, which means that 𝐴2 is also independent of 𝑿) and533
therefore534

|𝜹𝒖′ |2 = 𝐶 (𝜖 ′𝑟)2/3𝐹 (𝜃, 𝜙) (7.7)535

in the intermediate range 𝑙𝐼 ≪ 𝑟 = |𝒓 | ≪ 𝑙𝑂. Note that, reflecting the dimensionless536
coefficients in 𝜖 ′ ∼ 𝑉3

𝑂2/𝑙𝑂 ∼ 𝑉3
𝐼2/𝑙𝐼 , the dimensional coefficient 𝐶 can vary in space but537

is independent of Reynolds number. This is an obvious difference from Kolmogorov’s pre-538
diction for the second order structure function which is limited to statistically homogeneous539
turbulence. This difference highlights the underlying difference in the way that our result 7.7540
was obtained compared to Kolmogorov’s derivation of his corresponding prediction which541
resembles 7.7 in the scaling (𝜖 ′𝑟)2/3 but is otherwise different (see Frisch (1995), Pope542
(2000) and section 2 of Chen & Vassilicos (2022))543
We can refine our hypothesis of similarity by replacing it with an hypothesis of isotropic544

similarity which is an hypothesis of similarity for each component of 𝜹𝒖′, namely545

(𝛿𝑢′
𝑗
)2 = 𝑉2𝑂2(𝑿) 𝑓𝑂2, 𝑗

(
𝒓

𝑙𝑂

)
(7.8)546
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for |𝒓 | ≫ 𝑙𝐼 and547

(𝛿𝑢′
𝑗
)2 = 𝑉2𝐼2(𝑿) 𝑓𝐼2, 𝑗

(
𝒓

𝑙𝐼

)
(7.9)548

for |𝒓 | ≪ 𝑙𝑂 for every 𝑗 = 1, 2, 3. This is not an assumption of isotropy because neither the549
functions 𝑓𝑂2, 𝑗 nor the functions 𝑓𝐼2, 𝑗 are necessarily the same for different 𝑗 = 1, 2, 3. The550
argument leading to 7.7 can be repeated for every 𝑗 = 1, 2, 3 yielding551

(𝛿𝑢′
𝑗
)2 = 𝐶 𝑗 (𝜖 ′𝑟)2/3𝐹𝑗 (𝜃, 𝜙) (7.10)552

in the intermediate range 𝑙𝐼 ≪ 𝑟 = |𝒓 | ≪ 𝑙𝑂. The dimensionless coefficient𝐶 𝑗 may vary with553
𝑗 and with 𝑿 and the dimensionless function 𝐹𝑗 , which is independent of 𝑿 and of 𝑟 ≡ |𝒓 |,554
may also vary with 𝑗 . The determination of the inner length scale 𝑙𝐼 requires the small-scale555
energy balance 6.1. This is done in section 8. We complete the present section by confronting556
prediction 7.10 with our PIV data. This prediction is similar to Kolmogorov’s prediction557
for second order structure functions but it was derived without the homogeneity assumption558
required by Kolmogorov’s theory and without Kolmogorov’s scale-by-scale equilibrium559
which forms the physical basis of Kolmogorov’s dimensional analysis.560

7.1. Second order structure function measurements561

Wecompute the normalised structure functions ⟨(𝛿𝑢′
𝑗
)2/𝜖 ′2/3⟩ for 𝑗 = 1 (velocity fluctuations562

along the x-axis) and 𝑗 = 3 (velocity fluctuations along the z-axis) by averaging over time,563
i.e. over our 150, 000 samples (which correspond to 50, 000 uncorrelated samples) and also564
averaging over 𝑿, i.e. over the planar space of our field of view. The additional averaging565
over space is necessary for convergence of our statistics (see Appendix A.6). The normalised566

structure functions (𝛿𝑢′
𝑗
)2/𝜖 ′2/3 are therefore calculated by averaging over available points in567

the field of view in 150, 000 velocity field samples in this field of view. For two-point statistics,568
there are between 1.2 × 107 and 1.9 × 109 points available for convergence, depending on569
two-point separation vector, using both space and time averaging as explained in section570
4.3.2.571

Given that 7.10 implies ⟨(𝛿𝑢′
𝑗
)2/𝜖 ′2/3⟩ = ⟨𝐶 𝑗⟩𝑟2/3𝐹𝑗 (𝜃, 𝜙), we plot in figures 13a, 13b, 13c572

and 13d the compensated structure functions ⟨(𝛿𝑢′𝑥)2/𝜖 ′
2/3⟩𝑟−2/3 ( 𝑗 = 1) versus 𝑟𝑥/𝐷 (figure573

13a) and versus 𝑟𝑧/𝐷 (figure 13b) and ⟨(𝛿𝑢′𝑧)2/𝜖 ′
2/3⟩𝑟−2/3 ( 𝑗 = 3) versus 𝑟𝑥/𝐷 (figure 13c)574

and versus 𝑟𝑧/𝐷 (figure 13d). This is the intermediate range data collapse suggested by 7.10575
for all four configurations considered here. The dependence on 𝑟𝑥 represents the dependence576
on 𝑟 for 𝜃 = 𝜋/2 and 𝜙 = 0 whereas the dependence on 𝑟𝑧 represents the dependence on 𝑟577
for 𝜃 = 𝜋/2 and 𝜙 = 𝜋/2. The average turbulence dissipation rate ⟨𝜖 ′⟩ varying by a factor578
larger than 4 across our four different configurations (see Table 3), figure 13 suggests that579
the collapse of the compensated structure functions in figure 13 is satisfactory. The exponent580
of the power law dependence of these structure functions on 𝑟𝑥 and 𝑟𝑧 (in an expected581
intermediate range of scales much smaller than 𝑅 = 𝐷/2) appears close to but not exactly582
2/3 and seems to vary a little around 2/3 from plot to plot in figure 13. The theory presented583
above and yielding equations 7.7 and 7.10 may be a leading order theory with different higher584
order corrections for different 𝑗 components. Such corrections are beyond the scope of the585
present paper, but noting from the plots in figure 13 that there may be opposite corrections586
to the 2/3 scaling, we now consider the 𝑟𝑥 and 𝑟𝑧 dependencies of the normalized structure587

function ⟨(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )/𝜖 ′
2/3⟩. Equation 7.10 implies588

⟨(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )/𝜖 ′
2/3⟩ = 𝑟2/3 [⟨𝐶1⟩𝐹1(𝜃, 𝜙) + ⟨𝐶3⟩𝐹3(𝜃, 𝜙)] . (7.11)589
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Figure 13: Compensated structure functions

This compensated normalised structure function is presented in figure 14 as a function590
of 𝑟𝑥/𝐷 (i.e. 𝑟/𝐷 for 𝜃 = 𝜋/2 and 𝜙 = 0) in one plot and of 𝑟𝑧/𝐷 (i.e. 𝑟/𝐷 for 𝜃 = 𝜋/2591
and 𝜙 = 𝜋/2) in the other. Once again, the resulting collapse of the structure functions for592
the four different configurations is acceptable given the wide variation of < 𝜖 ′ > from one593
configuration to the other. To look at the power law scaling more finely, we estimate the594

logarithmic slopes of 𝑆 ≡ ⟨(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )/𝜖 ′
2/3⟩ versus both 𝑟𝑥 and 𝑟𝑧 , i.e. 𝑑𝑙𝑜𝑔𝑆

𝑑𝑙𝑜𝑔𝑟𝑥
and 𝑑𝑙𝑜𝑔𝑆

𝑑𝑙𝑜𝑔𝑟𝑧
,595

which we plot versus 𝑟𝑥 and 𝑟𝑧 respectively in figures 15a and 15b. A well-defined plateau596
appears in both directions for 𝑟𝑥 , 𝑟𝑧 ≪ 𝑅 = 𝐷/2 which confirms the power-law behavior of597
𝑆. The value of the plateau is the power-law exponent and it is slightly different in the two598
directions: it lies between 2/3 ≈ 0.66 and 0.7 in the 𝑟𝑥 direction, which is very close to the599
theory’s prediction but between 0.5 and 0.6 in the 𝑟𝑧 direction which is further away from it.600

601
We must leave it for future study to determine whether the deviation from 𝑛 = 2/3 that602

we observe in the vertical 𝑟𝑧 direction is a finite Reynolds number effect or whether it603
results from deviations from outer and/or inner isotropic similarity of second order structure604
functions. The good agreement with 𝑛 = 2/3 in the 𝑟𝑥 direction is nevertheless encouraging605
and so, in the following section, we use 𝑛 = 2/3 in conjunction with an analysis of the606
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Figure 14: Compensated structure function (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )
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Figure 15: Logarithmic slope of 𝑆 ≡ ⟨(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )/𝜖 ′
2/3⟩

small-scale energy budget to predict the relations between 𝑙𝐼 and 𝑙𝑂 and between 𝑉𝐼2 and607
𝑉𝑂2. Perhaps more importantly, though, this analysis also leads to predictions concerning608
non-linear interscale and interspace turbulent energy transfer rates which do not critically609
depend on the value of the exponent 𝑛 and which we also subject to experimental checks.610

8. Small-scale turbulent energy budgets611

Following Chen & Vassilicos (2022) who assume that regions exist in the flow where the612
non-linear and non-local dynamics of the small scale turbulence are similar at different places613
within the region, we now introduce, for such a region, inner and outer similarity forms for614
every term on the left hand side of equation 6.1.615

Outer similarity for |𝒓 | >> 𝑙𝐼 :616

∇𝑿 .(𝒖𝑿
′ |𝜹𝒖′ |2) =

𝑉3
𝑂𝑋

(𝑿)
𝑙𝑂

𝑓𝑂𝑋

(
𝒓

𝑙𝑂

)
(8.1)617
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∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) =
𝑉3
𝑂3(𝑿)
𝑙𝑂

𝑓𝑂3

(
𝒓

𝑙𝑂

)
(8.2)618

2∇𝑿 .(𝜹𝒖′𝛿𝑝′) =
𝑉3
𝑂𝑝

(𝑿)
𝑙𝑂

𝑓𝑂𝑝

(
𝒓

𝑙𝑂

)
(8.3)619

Inner similarity for |𝒓 | << 𝑙𝑂:620

∇𝑿 .(𝒖𝑿
′ |𝜹𝒖′ |2) =

𝑉3
𝐼𝑋
(𝑿)
𝑙𝐼

𝑓𝐼𝑋

(
𝒓

𝑙𝐼

)
(8.4)621

∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) =
𝑉3
𝐼3(𝑿)
𝑙𝐼

𝑓𝐼3

(
𝒓

𝑙𝐼

)
(8.5)622

2∇𝑿 .(𝜹𝒖′𝛿𝑝′) =
𝑉3
𝐼 𝑝
(𝑿)
𝑙𝐼

𝑓𝐼 𝑝

(
𝒓

𝑙𝐼

)
(8.6)623

The characteristic velocities 𝑉𝑂𝑋, 𝑉𝑂3, 𝑉𝑂𝑝, 𝑉𝐼𝑋, 𝑉𝐼3, 𝑉𝐼 𝑝 depend explicitly on 𝑿 but are624
independent of 𝒓 and 𝑓𝑂𝑋, 𝑓𝑂3, 𝑓𝑂𝑝, 𝑓𝐼𝑋, 𝑓𝐼3, 𝑓𝐼 𝑝 are dimensionless functions which do not625
depend explicitly on 𝑿 within the similarity region. Statistical homogeneity is the special626
case where 𝑓𝑂𝑋 = 𝑓𝑂𝑝 = 𝑓𝐼𝑋 = 𝑓𝐼 𝑝 = 0 and the characteristic velocities are independent of627
𝑿.628
As in the previous section, we expect the outer characteristic velocities to be independent629

of viscosity but the inner characteristic velocities to depend on it. The ratios of outer to630
inner characteristic velocities are therefore functions of local Reynolds number 𝑅𝑒𝑂, i.e.631
𝑉𝐼𝑋/𝑉𝑂𝑋 = 𝑔𝑋 (𝑅𝑒𝑂, 𝑿), 𝑉𝐼3/𝑉𝑂3 = 𝑔3(𝑅𝑒𝑂, 𝑿), 𝑉𝐼 𝑝/𝑉𝑂𝑝 = 𝑔𝑝 (𝑅𝑒𝑂, 𝑿), these functions632
approaching zero as 𝑅𝑒𝑂 tends to infinity.633
Following the approach we took in section 7, we can replace the hypothesis of similarity634

by a hypothesis of isotropic similarity for terms on the left hand side of equation 6.1.635
For the two terms not involving pressure fluctuations, this refined hypothesis states that636
𝜕
𝜕𝑟𝑖

𝑢′
𝑋𝑖
(𝛿𝑢′

𝑗
)2 and 𝜕

𝜕𝑟𝑖
𝛿𝑢′

𝑖
(𝛿𝑢′

𝑗
)2 (without summation over 𝑖 and without summation over637

𝑗) have an inner and an outer similarity form for every 𝑖, 𝑗 = 1, 2, 3. Only 𝑖, 𝑗 = 1, 3638
are accessible to our 2D2C PIV measurements and we therefore decompose the interscale639
transfer rate in two sub-terms, both of which have an inner and an outer similarity form:640
𝜕

𝜕𝑟𝑥
[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] + 𝜕

𝜕𝑟𝑧
[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] which is accessible to our 2D2C PIV and641

𝜕
𝜕𝑟𝑥

[𝛿𝑢′𝑥 (𝛿𝑢′2𝑦 )] + 𝜕
𝜕𝑟𝑧

[𝛿𝑢′𝑧 (𝛿𝑢′2𝑦 )] + 𝜕
𝜕𝑟𝑦

[𝛿𝑢′𝑦 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑦 + 𝛿𝑢′2𝑧 )] which is not. For example,642

𝜕

𝜕𝑟𝑥
[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] +

𝜕

𝜕𝑟𝑧
[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] =

𝑉3
𝑂3(𝑿)
𝑙𝑂

𝐹𝑂3

(
𝒓

𝑙𝑂

)
(8.7)643

for |𝒓 | ≫ 𝑙𝐼 and644

𝜕

𝜕𝑟𝑥
[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] +

𝜕

𝜕𝑟𝑧
[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] =

𝑉3
𝐼3(𝑿)
𝑙𝐼

𝐹𝐼3

(
𝒓

𝑙𝐼

)
(8.8)645

for |𝒓 | ≪ 𝑙𝑂. The function 𝐹𝑂3 is not the same as the function 𝑓𝑂3 and the function 𝐹𝐼3 is646
not the same as the function 𝑓𝐼3.647

We do the same for the interspace transfer rate ∇𝑿 .(𝒖𝑿
′ |𝜹𝒖′ |2) which we also decompose648

in two sub-terms, both of which have an inner and an outer similarity form. For the sub-term649
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which is accessible to our 2D2C PIV, for example, we therefore write650

𝜕

𝜕𝑟𝑥
[𝑢′

𝑋𝑥
(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] +

𝜕

𝜕𝑟𝑧
[𝑢′

𝑋𝑧
(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] =

𝑉3
𝑂𝑋

(𝑿)
𝑙𝑂

𝐹𝑂𝑋

(
𝒓

𝑙𝑂

)
(8.9)651

for |𝒓 | ≫ 𝑙𝐼 and652

𝜕

𝜕𝑟𝑥
[𝑢′

𝑋𝑥
(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] +

𝜕

𝜕𝑟𝑧
[𝑢′

𝑋𝑧
(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] =

𝑉3
𝐼𝑋
(𝑿)
𝑙𝐼

𝐹𝐼𝑋

(
𝒓

𝑙𝐼

)
(8.10)653

for |𝒓 | ≪ 𝑙𝑂. Again, the function 𝐹𝑂𝑋 is not the same as the function 𝑓𝑂𝑋 and the function654
𝐹𝐼𝑋 is not the same as the function 𝑓𝐼𝑋.655

8.1. Outer balance656

Using the outer similarity forms 8.1, 8.2 and 8.3, Chen & Vassilicos (2022) have shown that657
the outer form of the small-scale energy balance 6.1 for |𝒓 | ≫ 𝑙𝐼 tends to658

𝑉3
𝑂𝑋

𝑉3
𝑂2

𝑓𝑂𝑋 (𝒓/𝑙𝑂) +
𝑉3
𝑂3

𝑉3
𝑂2

𝑓𝑂3(𝒓/𝑙𝑂) +
𝑉3
𝑂𝑝

𝑉3
𝑂2

𝑓𝑂𝑝 (𝒓/𝑙𝑂) = −𝐶𝜖 (8.11)659

as 𝑅𝑒𝑂 → ∞, where the dissipation coefficient 𝐶𝜖 is defined on the basis of the turbulence660
dissipation scaling 𝜖 ′ ∼ 𝑉3

𝑂2/𝑙𝑂. This scaling follows from the hypothesis (often refered to661
as zeroth law of turbulence) that the turbulence dissipation rate is independent of the fluid’s662
viscosity at large enough Reynolds number, hence 𝜖 ′ = 𝐶𝜖𝑉

3
𝑂2/𝑙𝑂 where 𝐶𝜖 is independent663

of Reynolds number but can depend on 𝑿 and boundary/forcing conditions. It follows from664
8.11 that665

𝑉𝑂𝑋 ∼ 𝑉𝑂3 ∼ 𝑉𝑂𝑝 ∼ 𝐶
1/3
𝜖 𝑉𝑂2 (8.12)666

which means that all three velocities 𝑉𝑂𝑋, 𝑉𝑂3 and 𝑉𝑂𝑝 are the same function of 𝑿 as667

𝐶
1/3
𝜖 𝑉𝑂2. (The independence of𝐶𝜖 on 𝒓 which is required to go from (8.11) to (8.12) is valid668
without any restriction on spatial gradients of turbulent dissipation: the only requirement is669
that the second order spatial derivative of turbulent dissipation should be small compared to670
𝜖 ′/𝑙2

𝑂
).671

8.2. Inner balance672

Using the inner similarity forms 8.4, 8.5 and 8.6, Chen & Vassilicos (2022) have shown that673
the inner form of the small-scale energy balance 6.1 for |𝒓 | ≪ 𝑙𝑂 tends to674

𝑔3𝑋𝑔
−1
𝑙 𝑓𝐼𝑋 (𝒓/𝑙𝐼 ) + 𝑔33𝑔

−1
𝑙 𝑓𝐼3(𝒓/𝑙𝐼 ) + 𝑔3𝑝𝑔

−1
𝑙 𝑓𝐼 𝑝 (𝒓/𝑙𝐼 ) = −1 + 𝐶−1

𝜖 𝑅𝑒−1𝑂 𝑔22𝑔
−2
𝑙 ∇

2
r/𝑙𝐼 𝑓𝐼2(𝒓/𝑙𝐼 )

(8.13)675
as 𝑅𝑒𝑂 → ∞, where ∇2r/𝑙𝐼 is the Laplacian with respect to 𝒓/𝑙𝐼 and where 𝑅𝑒−1

𝑂
𝑔22𝑔

−2
𝑙

676

is independent of Reynolds number. They obtained this result without considering the677
possibility of explicit dependencies of the functions 𝑔𝑋, 𝑔3, 𝑔𝑝, 𝑔𝑙 on X but it can be678
checked that their result remains intact if such dependencies are taken into account. Writing679

𝑔22 (𝑅𝑒𝑂, 𝑿)𝑔
−2
𝑙 (𝑅𝑒𝑂, 𝑿) = 𝐴3(𝑿)𝑅𝑒𝑂 (8.14)680

in terms of a dimensionless coefficient 𝐴3 which can depend on 𝑿 (but not on 𝒓 and681
viscosity), we note that equation 8.13 is viable only if 𝑔3

𝑋
𝑔−1
𝑙
, 𝑔33𝑔

−1
𝑙
, 𝑔3𝑝𝑔−1𝑙 and 𝐴3/𝐶𝜖682

are all independent of 𝑿. Incidentally, the explicit X-dependence of the functions 𝑔2 and683
𝑔𝑙 and the constraint 𝐴3/𝐶𝜖 = 𝐶𝑜𝑛𝑠𝑡 independent of 𝑿 cancel the need for the theoretical684
readjustments in the Appendix of Chen & Vassilicos (2022).685
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With 7.6 and the exponent 𝑛 = 2/3 obtained theoretically in section 7, equation 8.14686

implies 𝑔𝑙 ∼ 𝑅𝑒
−3/4
𝑂
, therefore687

𝑙𝐼 ∼ 𝑙𝑂𝑅𝑒
−3/4
𝑂

(8.15)688

where the coefficient of proportionality can, in principle, be a function of 𝑿. Using equation689
8.14 once again leads to690

𝑉𝐼2 ∼ 𝑉𝑂2𝑅𝑒
−1/4
𝑂

(8.16)691

where the coefficient of proportionality is also, in principle, a function of 𝑿. One notes692
the resemblance of 𝑙𝐼 and 𝑉𝐼2 with the Kolmogorov length and velocity scales. However,693
these forms of 𝑙𝐼 and 𝑉𝐼2 have been obtained in an explicitely non-homogeneous context694
with hypotheses which, unlike those of Kolmogorov (see Frisch (1995), Pope (2000) and695
section 2 of Chen & Vassilicos (2022)), are adapted to non-homogeneous non-equilibrium696
turbulence. Note that we use the value 2/3 of the exponent 𝑛 only to derive 8.15 and 8.16,697
nothing else in this paper, and that 8.15 and 8.16 are not used to derive anything in the paper698
either.699

8.3. Intermediate scalings700

The turbulence dissipation scaling 𝜖 ′ = 𝐶𝜖𝑉
3
𝑂2/𝑙𝑂 and 8.12 imply701

𝜖 ′ ∼ 𝑉3𝑂3/𝑙𝑂 ∼ 𝑉3𝑂𝑋/𝑙𝑂 ∼ 𝑉3𝑂𝑝/𝑙𝑂 (8.17)702

where the proportionality coefficients are independent of 𝑿 (and of course also independent703
of 𝑅𝑒𝑂). One expects the non-linear terms to be part of the small-scale energy balance704
8.13 which means that 𝑔3

𝑋
𝑔−1
𝑙
, 𝑔33𝑔

−1
𝑙
and 𝑔3𝑝𝑔−1𝑙 should be independent of 𝑅𝑒𝑂 in the limit705

𝑅𝑒𝑂 → ∞ and so we write, in this limit, 𝑔3
𝑋
𝑔−1
𝑙

= 𝐵𝑋, 𝑔33𝑔
−1
𝑙

= 𝐵3 and 𝑔3𝑝𝑔−1𝑙 = 𝐵𝑝 where706
the dimensionless constants 𝐵𝑋, 𝐵3, 𝐵𝑝 are independent of 𝑿, 𝒓 and 𝑅𝑒𝑂. With 8.17, the707
implication is708

𝜖 ′ ∼ 𝑉3𝐼3/𝑙𝐼 ∼ 𝑉3𝐼𝑋/𝑙𝐼 ∼ 𝑉3𝐼 𝑝/𝑙𝐼 (8.18)709

where, once again, the porportionality coefficients are independent of 𝑿 and 𝑅𝑒𝑂. Hence,710
in the intermediate range 𝑙𝐼 ≪ |𝒓 | ≪ 𝑙𝑂 where equation 8.1 matches equation 8.4, equation711
8.2 matches equation 8.5 and equation 8.3 matches equation 8.6, we get 𝑓𝑂𝑋 (𝒓/𝑙𝑂) =712
𝐵𝑋 𝑓𝐼𝑋 (𝒓/𝑙𝐼 ), 𝑓𝑂3(𝒓/𝑙𝑂) = 𝐵3 𝑓𝐼3(𝒓/𝑙𝐼 ) and 𝑓𝑂𝑝 (𝒓/𝑙𝑂) = 𝐵𝑝 𝑓𝐼 𝑝 (𝒓/𝑙𝐼 ). These functions are713
therefore asymptotic constants in the intermediate range 𝑙𝐼 ≪ |𝒓 | ≪ 𝑙𝑂 as 𝑅𝑒𝑂 → ∞, and714
therefore:715

∇𝑿 .(𝒖𝑿
′ |𝜹𝒖′ |2) ∼ 𝜖 ′, (8.19)716

∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) ∼ 𝜖 ′ (8.20)717

and718

2∇𝑿 .(𝜹𝒖′𝛿𝑝′) ∼ 𝜖 ′ (8.21)719

in that range.720
The dimensionless coefficients of proportionality in 8.19, 8.20 and 8.21 are independent721

of 𝒓, independent of Reynolds number and independent of 𝑿 in the similarity region of the722
flow considered. They add up to −1 asymptotically as 𝑅𝑒𝑂 → ∞.723
The same procedure applied to equations 8.7 and 8.8 on the one hand and equations 8.9724
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and 8.10 on the other yields725

𝜕

𝜕𝑋𝑥

[𝑢′
𝑋𝑥

(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] +
𝜕

𝜕𝑋𝑧

[𝑢′
𝑋𝑧

(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] ∼ 𝜖 ′ (8.22)726

and727
𝜕

𝜕𝑟𝑥
[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] +

𝜕

𝜕𝑟𝑧
[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )] ∼ 𝜖 ′ (8.23)728

in the intermediate range 𝑙𝐼 ≪ |𝒓 | ≪ 𝑙𝑂 as 𝑅𝑒𝑂 → ∞. The dimensionless coefficients of729
proportionality in these two relations are also independent of 𝒓, Reynolds number and 𝑿.730
Note that our analysis does not reveal the signs of the various constants of proportionality731

in the five proportionality relations above. These signs are important, in particular for the732
interscale transfer rate as its sign can discriminate between transfer from small to large733
scales (forward cascade) or from large to small scales (inverse cascade). The last two734
proportionalities are the ones which are accessible to our 2D2C PIV measurements. For735
them, our measurements can establish whether the proportionality constants are well defined736
and, if they are, whether they are negative or positive.737
Before moving to our energy transfer measurements, we note that the hypothesis of inner-738

outer equivalence for turbulence dissipation introduced by Chen & Vassilicos (2022) and739
used in section 7 can now be seen to be a consequence of Reynolds number-independence740
of turbulence dissipation, outer and inner similarities and the natural assumption 𝑉𝐼3 =741
𝐶𝐼 (X)𝑉𝐼2 where the dimensionless coefficient 𝐶𝐼 (X) is independent of 𝑅𝑒𝑂 and 𝒓. Using742
𝜖 ′ = 𝐶𝜖 (X)𝑉3

𝑂2/𝑙𝑂 and the first proportionality in 8.18 (which follows from inner and743

outer similarities), one then obtains the inner-outer equivalence in the form 𝐶𝜖 (X)𝑉3
𝑂2/𝑙𝑂 ∼744

𝐶3
𝐼
(X)𝑉3

𝐼2/𝑙𝐼 with a proportionality coefficient that is independent of X and 𝑅𝑒𝑂. (It also745

follows that 𝐶𝜖 (X)/𝐶3
𝐼
(X) is independent of X).746

8.4. Energy transfer rate measurements747

The quantities obtained from our 2D2C PIV and presented in this sub-section require high748
spatial resolution, in particular for the estimation of the turbulence dissipation rate, and a high749
number of samples for convergence of third order statistics. Averaging over time is not enough750
for such convergence (see Appendix A.6). We therefore calculate spatial averages of both751
sides of proportionalities 8.22 and 8.23 given that they are the consequences of our theory that752
can be tested by our 2D2C PIV. In figures 16 and 17 we plot the normalised interscale transfer753

rate term 𝜕
𝜕𝑟𝑥

⟨[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ + 𝜕
𝜕𝑟𝑧

⟨[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ and the normalised754

interspace transfer rate term 𝜕
𝜕𝑟𝑥

⟨[𝑢′
𝑋𝑥

(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ + 𝜕
𝜕𝑟𝑧

⟨[𝑢′
𝑋𝑧

(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩755

(we recall that the brackets ⟨...⟩ are averages over 𝑿 in the plane of our field of view). Our756
theory predicts that an intermediate range of scales exists where these two normalised terms757
are about constant, this constant being the same for different Reynolds numbers. The spread758
of Taylor length-based Reynolds numbers across our four experimental configurations is759
from 480 to 650, and the average turbulence dissipation rate varies by a factor of 4 across760
these configurations. The Taylor length 𝜆 depends on the turbulence dissipation rate and in761
Appendix A we explain how we calculate both of them and how we denoise the PIV data762
for this purpose. The value of the average turbulence dissipation rate is probably slightly763
underestimated and this uncertainty is not taken into account in the error bars shown in764
figures 16 and 17. The spatial resolutions for all four configurations are given in Table 1.765
The normalised energy transfer terms are plotted versus 𝑟𝑥/𝜆 in figures 16a and 17a and766

versus 𝑟𝑧/𝜆 in figures 16b and 17b.We normalise the components 𝑟𝑥 and 𝑟𝑧 of the vector r by767
𝜆 because of the important role that 𝜆 has been shown to play in the separation length scale768
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dependence of the interscale transfer rate in decaying homogeneous turbulence (Obligado &769
Vassilicos (2019), Meldi & Vassilicos (2021)) and in fully developed turbulent channel flow770
(Apostolidis et al. (2023)). We find (figure 16) that the interscale transfer rate is negative for771
all observed scales in both directions 𝑟𝑥 and 𝑟𝑧 and all four configurations. This suggests772
a non-linear interscale turbulent energy transfer that is perdominantly from large to small773
scales, i.e. that the turbulence cascade is forward on average. The 2D2C PIV measurements774
also appear to support our theory’s prediction that a range of scales exists where the interscale775
transfer rate is proportional to the turbulence dissipation rate and independent of two-776

point separation length. Indeed, for the four configurations, 𝜕
𝜕𝑟𝑥

⟨[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ +777

𝜕
𝜕𝑟𝑧

⟨[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ appear to collapse within error bars around a constant value778

between 0.35 and 0.45 in the range 𝜆/2 ⩽ 𝑟𝑥 ⩽ 2𝜆 and around a constant value between 0.4779
and 0.5 in the range 𝜆/2 ⩽ 𝑟𝑧 ⩽ 5𝜆. Beyond these values of 𝑟𝑥 and 𝑟𝑧 statistical convergence780
visibly weakens. The Taylor length takes values between 3.7𝑚𝑚 and 4.9𝑚𝑚 across our four781
configurations and the field of view of our PIV is 27𝑚𝑚 × 28𝑚𝑚, hence we cannot access782
values of 𝑟𝑥/𝜆 and 𝑟𝑧/𝜆 larger than those in the plots of figure 16 and 17 (to avoid symmetry783
problems, we only used the right half of our field of view in the 𝑥-direction).784

Whilst the negative sign of the average interscale transfer rate and its proportionality with785
the average turbulence dissipation rate over a range of scales are similar to Kolmogorov’s786
prediction for the average interscale transfer rate in high Reynolds number statistically787
homogeneous stationary turbulence (Frisch (1995), Pope (2000), section 2 of Chen &788
Vassilicos (2022)), the constant of proportionality is not Kolmogorov equilibrium’s −1 but789
significantly smaller. This differencemay of course be accounted for by the difference between790
𝜕

𝜕𝑟𝑥
⟨[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ + 𝜕

𝜕𝑟𝑧
⟨[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ and ∇𝒓 .(⟨𝜹𝒖′ |𝜹𝒖′ |2⟩)/⟨𝜖 ′⟩791

and/or the Reynolds number not being large enough in case that this constant of792
proportionality has finite Reynolds number corrections. However, the results in figures793
17a and 17b make it clear that the turbulence studied here is significantly non-homogeneous794

at the scales where 𝜕
𝜕𝑟𝑥

⟨[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ + 𝜕
𝜕𝑟𝑧

⟨[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ is about795

constant. Indeed, these figures show that the normalised interspace transfer rate term796
𝜕

𝜕𝑋𝑥
⟨[𝑢′

𝑋𝑥
(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ + 𝜕

𝜕𝑋𝑧
⟨[𝑢′

𝑋𝑧
(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ is very significantly non-797

zero and in fact positive over all accessible length-scales in both directions 𝑟𝑥 and 𝑟𝑧798
for all four configurations. These consistent positive values mean that there is a leaving799
average turbulent flux which takes small-scale turbulent kinetic energy out of the field of800

view at all accessible length scales. In fact, 𝜕
𝜕𝑋𝑥

⟨[𝑢′
𝑋𝑥

(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ dominates this801

interspace transfer rate (see figure 18) and 𝜕
𝜕𝑋𝑧

⟨[𝑢′
𝑋𝑧

(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ is negligible if802

slightly negative. The small-scale turbulence energy is therefore transported out of the field803
of view by the turbulence predominantly in the horizontal direction.804

For all four configurations, 𝜕
𝜕𝑋𝑥

⟨[𝑢′
𝑋𝑥

(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩+ 𝜕
𝜕𝑋𝑧

⟨[𝑢′
𝑋𝑧

(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩,805

and 𝜕
𝜕𝑋𝑧

⟨[𝑢′
𝑋𝑧

(𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ which dominates it, appear to collapse within error bars806

around a constant value between about 0.05 and 0.15 in the range 𝜆/2 ⩽ 𝑟𝑥 ⩽ 2𝜆 and807
around a similar constant value in the range 𝜆/2 ⩽ 𝑟𝑧 ⩽ 5𝜆 (see figures 17a and 17b and808
18). We stress once again, that larger two-point separation scales are not accessible to our809
PIV and statistical convergence weakens at the larger values of 𝑟𝑥 and 𝑟𝑧 that we can access.810
Nevertheless, the results in figures 17a and 17b and figure 18 do not invalidate and may even811
arguably offer some support to our theory’s prediction 8.22 for the interspace turbulence812
transfer rate.813

To summarise, the parts of the interscale and of the interspace average turbulent transfer814
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Figure 16: Interscale transfer rate estimate

rates that we can access appear to be independent of two-point separation scale and are815
proportional to the average turbulence dissipation rate over a more or less overlapping range816
of scales. The average turbulence dissipation rate and the Taylor length-scale collapse the817
two-point separation scale dependence of the accessible parts of the energy transfer rates for818
all four configurations tried here.819
The average interscale transfer rate is negative, suggesting forward cascade, and the average820

interspace transfer rate is positive, suggesting outward turbulent transport of small-scale821
turbulence. This outward spatial turbulent flux is overwhelmingly in the 𝑥-direction. The822
non-homogeneity that it represents is present even at the smallest scales of the turbulence, in823
particular scales between 𝜆/2 and 5𝜆. It is therefore not possible to apply the Kolmogorov824
equilibrium theory to the small scales of the present turbulent flows. However our non-825
equilibrium theory of non-homogeneous small-scale turbulence is able to account for some826
of our observations.827
One can also analyse sub-terms of the part of the average interscale transfer rate that we828

measure. In figure 19,we plot 𝜕
𝜕𝑟𝑥

⟨[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ and 𝜕
𝜕𝑟𝑧

⟨[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩829

separately and see that they are both constant over the range of scales where their sum is830
constant and that they both contribute significantly to that sum but that the latter term is also831
significantly larger in magnitude than the former.832
The magnitude of the accessible average interscale transfer rate is roughly 4 times larger833

than the magniture of the accessible average interspace transfer rate. Considering our834
measurements, our theory (in particular equation 8.21) and the small-scale energy balance835
6.1 averaged over the field of view of our PIV, it is highly likely that the pressure-velocity836
term in that balance plays a dominant role at scales |r| larger than 𝜆/2.837

9. Large-scale turbulent energy budget838

We do not apply the previous section’s theoretical approach to the large-scale turbulent839
energy budget, equation 2.8, given that the two-point turbulence production rate 𝑃𝑋 tends840
to the one-point turbulence production rate in the limit 𝒓 → 0 and given the PIV evidence841
of section 5 suggesting that it is significantly non-zero at the smallest scales and does not842
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Figure 17: Interspace transport rate estimate

collapse with the average turbulence dissipation rate. Indeed, figure 9 shows that ⟨˜̃𝑃𝑋⟩/⟨𝜖 ′⟩843
differs substantially for the regular and the fractal-like blades.844
Furthermore, the spatio-temporal average of the part of the interspace turbulent transport845

rate of large-scale turbulence energy that is accessible to our 2D2C PIV, i.e. 𝜕
𝜕𝑋𝑥

[𝑢′
𝑋𝑥

(𝑢′2
𝑋𝑥

+846

𝑢′2
𝑋𝑧
)] + 𝜕

𝜕𝑋𝑧
[𝑢′

𝑋𝑧
(𝑢′2

𝑋𝑥
+ 𝑢′2

𝑋𝑧
)], does not collapse with the average turbulence dissipation rate847

⟨𝜖 ′⟩. This is clear in figures 20a and 20b which also show that the normalised spatio-temporal848

average 𝜕
𝜕𝑋𝑥

⟨[𝑢′
𝑋𝑥

(𝑢′2
𝑋𝑥

+ 𝑢′2
𝑋𝑧
)]⟩/⟨𝜖 ′⟩ + 𝜕

𝜕𝑋𝑧
⟨[𝑢′

𝑋𝑧
(𝑢′2

𝑋𝑥
+ 𝑢′2

𝑋𝑧
)]⟩/⟨𝜖 ′⟩ may depend linearly849

on 𝑟𝑧 for 𝑟𝑧 ⩾ 𝜆/2 and may be constant or linear with 𝑟𝑥 for 𝑟𝑥 ⩾ 𝜆/2 depending on type of850
blade. This is very different behaviour from the average interspace turbulent transport rate851
of small-scale energy in figure 17.852
Another important difference is the non vanishing value when 𝒓 → 0 of the average853

interspace turbulent transport rate of large-scale energy (see figure 20). Indeed, when 𝒓 → 0,854
this term converges to the space-time averaged one-point turbulent energy transport rate855

< ∇.𝒖′ |𝒖′ |2 >. This one-point turbulence transport rate reflects the non-homogeneity of856
each particular configuration and there is no reason to expect it to collapse when normalised857
by dissipation. There is therefore no reason either to expect such a collapse for the average858
two-point interspace turbulent transport rate of large-scale energy at the smallest two-point859
separations. Consistently, the measurements suggest that such a collapse is in fact absent at860
all two-point separations tested (figure 20).861
The indications are, therefore, that the large-scale turbulent energy budget 2.8 is very862

different from the small-scale turbulent energy budget and that a theory of the type developed863
in the previous section for the small-scale turbulent energy budget cannot be developed for864
the large-scale turbulent energy budget. Nevertheless, there is a kinematic relation between865
the rate with which large scales gain or lose turbulent energy to the small scales via non-linear866
turbulence interactions and the rate with which small scales gain or lose turbulent energy867
via such interactions. This is equation 3.2. Neglecting mean flow velocity differences and868
two-point turbulence production rates 𝑃𝑟 and 𝑃𝑙

𝑋𝑟
, as appears to be possible in our PIV’s869

field of view for small two-point separation lengths, equation 3.2 becomes870

∇𝒓 · (𝜹𝒖′ |𝜹𝒖′ |2) + ∇𝒓 · (𝜹𝒖′ |𝒖𝑿
′ |2) = 2∇𝑿 · (𝜹𝒖′ (𝜹𝒖′ · 𝒖′

𝑿 )) (9.1)871
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Figure 18: Interspace transport rate

where ∇𝒓 · (𝜹𝒖′ |𝒖𝑿
′ |2) represents the rate with which large scales lose or gain turbulent872

energy to or from the small scales and ∇𝒓 · (𝜹𝒖′ |𝜹𝒖′ |2) represents the rate with which small-873
scales gain or lose turbulent energy by the non-linear turbulence interactions (see also the874
complementary description of these transfer rates under equation 3.2). In general, and in875
the present flow in particular, the passage of turbulent energy from large to small scales (or876
vice versa) is not necessarily “impermeable” as energy can leak out of this cascade process877
because of non-homogeneities, in the present case by the spatial gradient term on the right878
hand side of 9.1.879
In figures 21a and 21b we plot the spatio-temporal average of the part of ∇𝒓 · (𝜹𝒖′ |𝒖𝑿

′ |2)880

that is accessible to our 2D2CPIV, namely 𝜕
𝜕𝑟𝑥

⟨[𝛿𝑢′𝑥 (𝑢′2𝑋𝑥
+ 𝑢′2

𝑋𝑧
)]⟩+ 𝜕

𝜕𝑟𝑧
⟨[𝛿𝑢′𝑧 (𝑢′2𝑋𝑥

+ 𝑢′2
𝑋𝑧
)]⟩.881

We plot it normalised by ⟨𝜖 ′⟩ versus both 𝑟𝑥/𝜆 and 𝑟𝑧/𝜆 and we note that it collapses well882
for the four different configurations. Furthermore, it appears to have a constant value across883
the same ranges 𝜆/2 ⩽ 𝑟𝑥 ⩽ 2𝜆 and 𝜆/2 ⩽ 𝑟𝑧 ⩽ 5𝜆 where the part of the spatio-temporal884

average of ∇𝒓 · (𝜹𝒖′ |𝜹𝒖′ |2) that is accessible to our PIV has an approximately collapsed885
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Figure 19: Interscale transfer rate

constant value (figure 16). This suggests a strong link between these two turbulent energy886
transfer rates.887
The positive constant value of 𝜕

𝜕𝑟𝑥
⟨[𝛿𝑢′𝑥 (𝑢′2𝑋𝑥

+ 𝑢′2
𝑋𝑧
)]⟩/⟨𝜖 ′⟩+ 𝜕

𝜕𝑟𝑧
⟨[𝛿𝑢′𝑧 (𝑢′2𝑋𝑥

+ 𝑢′2
𝑋𝑧
)]⟩/⟨𝜖 ′⟩888

(see figure 21) is slightly lower than the magnitude of the negative constant value889

of 𝜕
𝜕𝑟𝑥

⟨[𝛿𝑢′𝑥 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ + 𝜕
𝜕𝑟𝑧

⟨[𝛿𝑢′𝑧 (𝛿𝑢′2𝑥 + 𝛿𝑢′2𝑧 )]⟩/⟨𝜖 ′⟩ (see figure 16). If this890

experimental observation reflects a similar difference between ∇𝒓 .(𝜹𝒖′ |𝒖𝑿
′ |2) and891

∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) then the interpretation will have to be that large scales lose energy to892
small scales but that the small scales receive more of the energy lost by the large ones893
because some energy is transported from elsewhere in physical space without changing894
scale. In the kinematic equation 9.1, this energy leak away from the interscale turbulent895

energy transfer process is accounted for by 2∇𝑿 .(𝜹𝒖′ (𝜹𝒖′.𝒖′
𝑿 )) which can be non-zero in896

non-homogeneous turbulence (or, more generally, by all the other terms present in equation897
3.2 if they cannot be neglected).898

899
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Figure 20: Interspace transfer estimate of 𝒖𝑿
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Figure 21: Interscale transfer estimate of 𝒖𝑿
2

The experimental results presented in figures 21a and 21b may be reflecting a proportion-900
ality901

∇𝒓 · < 𝜹𝒖′ |𝒖𝑿
′ |2 >∼< 𝜖 ′ > (9.2)902

which cannot be confirmed or invalidated with our 2D2C PIV. This proportionality concerns903
interscale energy transfer within the large-scale turbulent energy budget and is additional to904
the proportionalities 8.19, 8.20, 8.21 obtained in the previous section on the basis of the small-905
scale turbulent energy budget. The previous section’s theory does not give the proportionality906
coefficients of these relations. In the following section we present an hypothesis which has907
the power, if and when valid, to determine some such proportionality coefficients.908

10. A local small-scale homogeneity hypothesis909

We consider statistically stationary non-homogeneous turbulence by comparison to the case910
of statistically homogeneous non-stationary turbulence which we addressed in section 3911
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(equations 3.3 to 3.8). Statistical stationarity is meant in the Lagrangian sense of following912

the mean flow, i.e. 𝒖𝑿 .∇𝑿
1
2 |𝜹𝒖

′ |2 = 0 = 𝒖𝑿 .∇𝑿
1
2 |𝒖

′
𝑿 |2. This is indeed the case in the present913

flows because the mean flow velocity is vertical (i.e. in the 𝑧 direction) and the turbulence914
varies mainly in the horizontal direction. With this statistical stationarity and by considering915
scales |r| large enough to neglect viscous diffusion, fluctuating energy equations 2.4 and 2.8916
become, respectively,918

𝜹𝒖.∇𝒓
1
2
|𝜹𝒖′ |2 − 𝑃𝑟 − 𝑃𝑠

𝑋𝑟 + ∇𝑿 ·
(
𝒖𝑿

′ 1
2
|𝜹𝒖′ |2 + 𝜹𝒖′𝛿𝑝′

)
≈ −∇𝒓 .(𝜹𝒖′ 1

2
|𝜹𝒖′ |2) − 𝜈

4
𝜕𝑢′+

𝑖

𝜕𝜁+
𝑘

𝜕𝑢′+
𝑖

𝜕𝜁+
𝑘

− 𝜈

4
𝜕𝑢′−

𝑖

𝜕𝜁−
𝑘

𝜕𝑢′−
𝑖

𝜕𝜁−
𝑘

(10.1)919

and921

𝜹𝒖.∇𝒓
1
2
|𝒖′

𝑿 |2 − 𝑃𝑋 − 𝑃𝑙
𝑋𝑟 + ∇𝑿 ·

(
𝒖𝑿

′ 1
2
|𝒖𝑿

′ |2 + 𝒖𝑿
′𝑝′

𝑋

)
≈ −∇𝒓 .(𝜹𝒖′ 1

2
|𝒖𝑿

′ |2) − 𝜈

4
𝜕𝑢′+

𝑖

𝜕𝜁+
𝑘

𝜕𝑢′+
𝑖

𝜕𝜁+
𝑘

− 𝜈

4
𝜕𝑢′−

𝑖

𝜕𝜁−
𝑘

𝜕𝑢′−
𝑖

𝜕𝜁−
𝑘

(10.2)922

923
We formulate an hypothesis of local homogeneity as a parallel to Kolmogorov’s small-scale924
stationarity hypothesis (see section 3). Whereas most terms on the left hand side of equation925
10.2 do not tend to 0 as 𝒓 tends to 0, the left hand side of 10.1 does tend to 0 in that926
limit. The local small-scale homogeneity hypothesis that we make is the hypothesis that927

in the limit of increasing Reynolds number, the magnitude of 𝜹𝒖.∇𝒓
1
2 |𝜹𝒖

′ |2 − 𝑃𝑟 − 𝑃𝑠
𝑋𝑟

+928

∇𝑿 ·
(
𝒖𝑿

′ 1
2 |𝜹𝒖

′ |2 + 𝜹𝒖′𝛿𝑝′
)
is increasingly smaller than the local time-averaged turbulence929

dissipation rate at small enough scales |𝒓 |. With this hypothesis, and with the approximation930

𝜈
4
𝜕𝑢′+

𝑖

𝜕𝜁 +
𝑘

𝜕𝑢′+
𝑖

𝜕𝜁 +
𝑘

+ 𝜈
4
𝜕𝑢′−

𝑖

𝜕𝜁 −
𝑘

𝜕𝑢′−
𝑖

𝜕𝜁 −
𝑘

≈ 𝜖 ′ which is acceptable at small enough |𝒓 |, the small-scale turbulent931

energy balance 10.1 simplifies to932

∇𝒓 .(𝜹𝒖′ |𝜹𝒖′ |2) ≈ −𝜖 ′ (10.3)933

in an intermediate range of scales large enough to neglect viscous diffusion but small enough934
to neglect small-scale non-homogeneity. This balance incorporates the proportionality 8.20935
but also sets the proportionality constant to −1. The similarity hypotheses required to obtain936
8.20 are weaker than the local small-scale homogeneity hypothesis introduced here. A priori,937
they can be valid even if and when the local small-scale homogeneity hypothesis is not.938
When 𝜹𝒖, 𝑃𝑟 and 𝑃𝑠

𝑋𝑟
are negligible at small enough |𝒓 |, as appears to be the case in the939

flow regions considered here, the local small-scale homogeneity hypothesis implies that940

the magnitude of ∇𝑿 ·
(
𝒖𝑿

′ 1
2 |𝜹𝒖

′ |2 + 𝜹𝒖′𝛿𝑝′
)
is increasingly small compared to 𝜖 ′ with941

increasing Reynolds number for small enough values of |𝒓 |. It may be that, as the Reynolds942
number tends to infinity, 8.20 tends to 10.3 thereby recovering Kolmogorov’s scale-by-943
scale equilibrium for homogeneous turbulence at small enough scales and implying that this944
Kolmogorov equilibrium is a very particular case of 8.20. However, it is not clear how such945
a statement could be established at the current time and the foreseeable future.946

We now use the kinematic relation 9.1, but we could also use its more general form 3.2 if947
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we did not want to neglect 𝜹𝒖, 𝑃𝑟 and 𝑃𝑙
𝑋𝑟
from the outset. From 9.1 and 10.3 follows948

∇𝒓 .𝜹𝒖
′ |𝒖′

𝑿 |2 ≈ 𝜖 ′ + 2∇𝑿 · (𝜹𝒖′ (𝜹𝒖′ · 𝒖′
𝑿 )) (10.4)949

which is the analogue for stationary non-homogeneous turbulence of theGermano-Hosokawa950
relation 3.7 for homogeneous non-stationary (in fact freely decaying) turbulence.951
Finally, the analogue of 3.8 for stationary non-homogeneous turbulence is obtained from952

10.4 and 10.2 and it is953

− 𝑃𝑋 − 𝑃𝑙
𝑋𝑟 + ∇𝑿 ·

(
𝒖𝑿

′ 1
2
|𝒖𝑿

′ |2 + 𝒖𝑿
′𝑝′

𝑋
+ 𝜹𝒖′ (𝜹𝒖′ · 𝒖′

𝑿 )
)
≈ −𝜖 ′. (10.5)954

955
Like equation 10.3, equations 10.4 and 10.5 hold in an intermediate range of scales956
large enough to neglect viscous diffusion and small enough to neglect small-scale non-957
homogeneity. Note that equation 10.5 identifies a statistic characterising non-homogeneity958
which is proportional to 𝜖 ′ with proportionality coefficient −1. This statistic is not captured959
by the non-equilibrium theory of non-homogeneous turbulence of section 8. In this case,960
the hypothesis of local small-scale homogeneity makes a prediction concerning turbulence961
non-homogeneity which is not accessible to the theory of section 8.962

11. Conclusion963

We have studied a turbulent flow region under rotating blades in a baffled container where964
the baffles break the rotation in the flow. The evidence from our 2D2C PIV supports the view965
that, within our PIV’s field of view, two-point production makes a negligible contribution to966
the small-scale energy equation 2.4 over a range of small two-point separation lengths. In967
the absence of such production, we may assume the non-linear and non-local dynamics of968
the small-scale turbulence to be effectively the same at different places. We have therefore969
made the similarity hypothesis that every term in the non-homogeneous but statistically970
stationary scale-by-scale (two-point) small-scale energy balance 6.1 has the same dependence971
on two-point separation at different positions X if rescaled by X-local velocity and length972
scales. Following the theory of Chen & Vassilicos (2022) we have introduced such similarity973
hypotheses for both inner and outer scales and have considered intermediate matchings. We974
have also improved the theory (i) by deriving the inner-outer equivalence hypothesis of Chen975
& Vassilicos (2022) for turbulence dissipation from a more intuitively natural hypothesis976
and (ii) by taking explicit account of non-homogeneity in the inner to outer velocity ratios,977
thereby extending the theory’s applicability range and removing the need for the theoretical978
adjustments in the Appendix of Chen & Vassilicos (2022).979
This non-equilibrium theory of non-homogeneous small-scale turbulence predicts that an980

intermediate range of length-scales exists where the interscale turbulence transfer rate, the981
two-point interspace turbulence transport rate and the two-point pressure gradient velocity982
correlation term in equation 6.1 are all proportional to the turbulence dissipation rate. Given983
the limitations of 2D2C PIV we have been able to measure only parts (truncations) of the984
interscale turbulence transfer rate and the two-point interspace turbulence transport rate in985
equation 6.1. This has forced us to introduce inner and outer hypotheses of isotropic similarity986
applicable to the truncations accessible to our measurements. With these hypotheses (which987
should not be confused with hypotheses of isotropy) the theory leads to the same predictions988
for the 2D2C PIV-truncated interscale turbulence transfer rate and two-point interspace989
turbulence transport rate in equation 6.1. Our 2D2C PIV measurements suggest that these990
truncations may indeed be independent of two-point separation scale and be proportional991
to the average turbulence dissipation rate over a more or less overlapping range of scales992
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as predicted by the theory. The PIV-truncated two-point interspace turbulence transport993
rate is significantly non-zero, thereby reflecting both the presence of small-scale non-994
homogeneity and the absence of Kolmogorov scale-by-scale equilibrium. Its proportionality995
with the turbulence dissipation rate is evidence that small-scale non-homogeneity and non-996
equilibrium do actually obey general rules.997
The PIV-truncated average interscale transfer rate of small-scale turbulent energy is nega-998

tive, suggesting forward cascade if the corresponding full (non-truncated) average interscale999
transfer rate has the same sign, and the PIV-truncated average interspace turbulent transfer1000
rate of small-scale turbulence energy is positive, suggesting outward turbulent transport of1001
small-scale turbulence if the corresponding full (non-truncated) average interspace turbulent1002
transfer rate is also positive.1003
We have also applied hypotheses of inner and outer similarity as well as inner and outer1004

isotropic similarity to second order structure functions of turbulent fluctuating velocities.1005
Inner-outer intermediate matching has led to the prediction of power law dependencies on1006
turbulence dissipation rate and two-point separation length with power law exponent 𝑛 = 2/3.1007
The 2D2C PIV has provided support for this Kolmogorov-like value of the exponent in the1008
𝑟𝑥 direction but not in the 𝑟𝑧 direction where the PIV suggests an exponent 𝑛 between 0.51009
and 0.6. Future studies should investigate whether rotation, even if effectively faint within1010
our field of view because of the rotation-breaking effect of the baffles, may require similarity1011
forms in terms of more than one outer length scale 𝑙𝑂 and more than one inner length scale1012
𝑙𝐼 , depending on direction. The value of the exponent 𝑛 impacts only the Reynolds number1013
dependencies of 𝑙𝐼/𝑙𝑂 and 𝑉𝐼/𝑉𝑂 and has no direct impact on the other predictions of the1014
theory. The exponent 𝑛 = 2/3 implies the Kolmogorov-like scalings 8.15 and 8.16.1015
The large-scale turbulent energy budget 2.8 is very different from the small-scale turbulent1016

energy budget 2.4 both in terms of production and interspace turbulence transport which1017
are both non-zero in the limit of zero two-point separation lengths when the turbulence is1018
inhomogeneous. We have therefore not applied to 2.8 the similarity approach that we applied1019
to 2.4. However, we have taken advantage of the kinematic relation which exists between the1020
rate with which large scales gain or lose turbulent energy to the small scales via non-linear1021
turbulence interactions (present in 2.8) and the rate with which small scales gain or lose1022
turbulent energy via such interactions (present in 2.4). The PIV-truncated part of the rate1023
with which large scales gain or lose turbulent energy to the small scales has turned out to1024
be approximately independent of two-point separation scale and proportional to the average1025
turbulence dissipation rate over the same range of scales where the PIV-truncated interscale1026
transfer rate in 2.4) exhibites the same behaviour. However, these two transfer rates do not1027
balance, which suggests that the transfer of turbulent energy from large to small scales (or1028
vice versa) may not be “impermeable” in the sense that energy may be leaking out of this1029
cascade process because of non-homogeneities, in the present case by the spatial gradient1030
term on the right hand side of 9.1.1031
Our non-equilibrium theory of non-homogeneous turbulence does not give the propor-1032

tionality coefficients in 8.19, 8.20 and 8.21. We have therefore introduced a local small-scale1033
homogeneity hypothesis in section 10 as a space analogue of Kolmogorov’s small-scale1034
stationarity hypothesis but do not have criteria, at this stage, for the validity of this small-1035
scale homogeneity hypothesis. If and when this new hypothesis may hold (perhaps in the1036
limit of infinite Reynolds numbers?) the coefficient of proportionality in 8.20 will be −1.1037
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Appendix A. Computation of the turbulence parameters1051

The following conventions are used to compute the different turbulent parameters.1052

A.1. Dissipation1053

The axisymmetric dissipation formulation is used (George & Hussein (1991)) where the1054
rotation axis is 𝑧 (A 1). The dissipation is averaged both in space and time to obtain a1055
converged estimate over the field of view. The notation < . > is used for space averaging and1056

(.) for time averaging.1057

< 𝜖 ′ >= 𝜈<

(
−

(
𝜕𝑢′𝑧
𝜕𝑧

)2
+ 2

(
𝜕𝑢′𝑧
𝜕𝑥

)2
+ 2

(
𝜕𝑢′𝑥
𝜕𝑧

)2
+ 8

(
𝜕𝑢′𝑥
𝜕𝑥

)2)
>. (A 1)1058

Different estimates are tested to check the results’ robustness with respect to the choice1059
estimate. One of them is defined in equationA 2 and evaluated in table 4 after signal denoising1060
(method explained in the next paragraph):1061

< 𝜖 ′𝜏 >=
𝜈

3
<

(
2 × 15

(
𝜕𝑢′𝑥
𝜕𝑥

)2
+ 15

(
𝜕𝑢′𝑧
𝜕𝑧

)2)
>. (A 2)1062

The results are different by less than 10% but more importantly the evolution from one1063
configuration to the other is consistent. Therefore, the results’ variation does not seems to be1064
significantly dependent on the estimate choice so that dissipation scalings can be evaluated1065
accurately. However, the value itself might contains some uncertainty.1066

The dissipation computation from experimental data is difficult because PIV introduces1067
random noise during measurements. This noise significantly contaminates the dissipation1068
(Foucaut et al. (2021)). Indeed, the turbulent energy is small at small scales so that noise1069
can dominate at these scales. In the paper mentioned, the product of the derivatives used1070
to compute dissipation is overestimated by 70% before denoising. The best way to denoise1071
dissipation is to perform the experiment with two different PIV set-ups so that the noise1072
of both measurements are decorrelated. The product of the derivatives obtained from the1073
two systems cancel the random noise contribution (equation A 3). Indeed, the noise is not1074
correlated with the true signal and the noise of the two set-ups is decorrelated so it cancels1075
out once averaged.1076

1077
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<
𝜕𝑢′

𝜕𝑥
|𝑠1 ×

𝜕𝑢′

𝜕𝑥
|𝑠2 >

=<
𝜕̂𝑢′

𝜕𝑥
|𝑠1 ×

𝜕̂𝑢′

𝜕𝑥
|𝑠2 > + < 𝛽𝑠1 ×

𝜕̂𝑢′

𝜕𝑥
|𝑠2 > + <

𝜕̂𝑢′

𝜕𝑥
|𝑠1 × 𝛽𝑠2 > + < 𝛽𝑠1 × 𝛽𝑠2 >

=<
𝜕̂𝑢′

𝜕𝑥
|𝑠1 ×

𝜕𝑢

𝜕𝑥
|𝑠2 >

(A 3)1079

Where < . > is used for realization averaging here, 𝑠1 (resp. 𝑠2) refers to system 1 (resp.1080

system 2), 𝛽 is the random PIV noise and (̂.) refers to denoised data (i.e. without noise but1081
with PIV interrogation window filtering effect).1082

1083
This double measurement was not possible for this experiment because of practical1084

limitations. Therefore, a simplified denoising method is used. The idea is to use the1085
measurement’s high resolution (in space or in time) and shift the two derivatives by a1086
small offset. This method introduces a small filtering of the true signal but the noise cancels1087
out. The experimental measurements are highly resolved in time so time denoising is used:1088

<
𝜕𝑢′

𝜕𝑥
|𝑡 ×

𝜕𝑢′

𝜕𝑥
|𝑡+𝑑𝑡 >

=<
𝜕̂𝑢′

𝜕𝑥
|𝑡 ×

𝜕̂𝑢′

𝜕𝑥
|𝑡+𝑑𝑡 > + < 𝛽𝑡 ×

𝜕̂𝑢′

𝜕𝑥
|𝑡+𝑑𝑡 > + 𝜕̂𝑢

′

𝜕𝑥
|𝑡 × 𝛽𝑡+𝑑𝑡 > + < 𝛽𝑡 × 𝛽𝑡+𝑑𝑡 >

=<
𝜕̂𝑢′

𝜕𝑥
|𝑡 ×

𝜕̂𝑢′

𝜕𝑥
|𝑡+𝑑𝑡 >

≈< 𝜕̂𝑢′

𝜕𝑥
|𝑡 ×

𝜕̂𝑢′

𝜕𝑥
|𝑡 >

(A 4)1090

where 𝛽𝑡 and 𝛽𝑡+𝑑𝑡 are uncorrelated because the new particles entering the interrogation1091
window (IW) at t +dt change the peak shape, so the peak fit random noise is then completely1092
different. This method is valid if 𝑑𝑡 (the time increment between two velocity fields) is small1093
enough so that the denoised quantities do not change significantly between two time steps but1094
not too small (otherwise there would be no new particles inside the IW). In the experiments1095
carried out, 𝑑𝑡 is chosen to have time resolved results which means the particle displacement1096
between two frames is less than 10 pixels. The PIV processing (final pass) is done with a1097
window size of 32 pixels × 32 pixels so that there is already a spatial filtering of the data.1098
Therefore, the filtering introduced by shifting the two derivatives by a maximum of 10 pixels1099
is comparable or smaller than the already existing PIV filtering so that the results should1100
not change significantly. Therefore, this method can be used to denoise experimental data1101
without losing too much information of the true signal. This method might however slightly1102
underestimate the dissipation. The same procedure can also be used in space by selecting1103
different points in the derivative, i.e. multiplying the derivative at x and at x+dx computed1104
with a centred scheme, where dx is the vector spacing. As a 62% overlap is used, the four1105
points used are separated by 36px which corresponds to a second filter which has about the1106
same filter size as the IW.1107
The denoising process is tested both in space and in time to check the results consistency1108

(table 4). The results are close so that the method seems to be reliable. There is a significant1109
dissipation decrease associated to the denoising process (around a factor 2). These results1110
seems to be consistent because the mixer PIV measurements are expected to be more noisy1111
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F (Hz) < 𝜖 ′ > (with noise) �
< 𝜖 ′ > (space method) �

< 𝜖 ′ > (time method) �
< 𝜖 ′𝜏 > (time method)

Rectangular blades 1 5.2E-03 3.5E-03 3.6E-03 3.7E-03
Rectangular blades 1.5 1.7E-02 1.1E-02 1.2E-02 1.3E-02
Fractal blades 1 4.2E-03 2.6E-03 2.4E-03 2.5E-03
Fractal blades 1.5 1.3E-02 8.2E-03 8.2E-03 8.6E-03

Table 4: Dissipation computation (𝑚2/𝑠3)

than typical air experiments. Indeed, this noise is amplified by the remaining presence of1112
small air bubbles in water and the difficulty to obtain the optimal particle concentration1113
linked to this high magnification measurement. These results underline also the importance1114
to denoise dissipation. The energy spectrums and two-point statistics do not need to have1115
the same denoising process because the noise is known to be present only at small scales.1116
Therefore, only the small scale part of the results (large 𝑘 in Fourier space or small 𝑟 in1117
two-point space) are contaminated by this PIV noise. Eventually, the PIV resolution affects1118
significantly the dissipation results and a small underestimation is expected in our results as1119
explained in section 4.3.1.1120

1121
Overall, the dissipation computation is a difficult problem where resolution, noise and1122

convergence affect significantly the results. For these experiments, the resolution is acceptable1123
in several configurationswhich can be used for reference, the noise impact is removed through1124
denoising process and the convergence is achieved through an averaging over 100,000 velocity1125
fields (corresponding to 50,000 uncorrelated) and space averaging over the field of view. The1126

dissipation estimate is expected to be slightly underestimated. For simplicity the notation (̂.)1127
is not used in the publication but all the dissipation results are denoised.1128

A.2. Taylor micro scale and Taylor Reynolds number1129

The following formulation of the Taylor micro-scale is used:1130

𝜆 =

√︂
15𝜈
𝜖

√︄
𝑢′
2
𝑥 + 𝑢′

2
𝑧

2
(A 5)1131

The value of the Taylor scale can vary significantly with the formulation choice. However,1132
the variation from one configuration to the other should remain consistent whatever the1133
formulation. The following formulation is also tested:1134

𝜆 =

√︂
15𝜈
𝜖

√︄
2𝑢′2𝑥 + 𝑢′

2
𝑧

3
(A 6)1135

This formulation overestimates the value by a close to constant proportion between 20%1136
and 25 % compared to A 5. The plots collapse is nearly unchanged when this later estimate1137
is used to non-dimensionalize 𝑟 .1138

1139
The Reynolds number based on the Taylor length is calculated:1140

𝑅𝑒𝜆 =
𝜆

√︃
𝑢′
2
𝑥 + 𝑢′

2
𝑧

𝜈
(A 7)1141
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This number is used to quantify the turbulence development. The following formulation1142
is also tested:1143

𝑅𝑒𝜆 =
𝜆

√︃
2𝑢′2𝑥 + 𝑢′

2
𝑧

𝜈
(A 8)1144

This formulation overestimates the value by a close to constant proportion between 45%1145
and 50% compared to A 7. This magnitude difference is significant but the main risk is to1146
overestimate the Reynolds number. Therefore, the formulation with the smallest values is1147
retained.1148

A.3. Peak locking quantification1149

The experimental PIV measurements introduce a random error which respect a Gaussian1150
distribution law. This distribution law has a zero mean and usually a standard deviation1151
around 0.1 - 0.2 px (Raffel et al. (2018)). It introduces also the peak locking systematic1152
error as explained previously. This latter error can be quantified through the probability1153
distribution function (PDF) of the particle displacement in pixel: 𝑢𝑝𝑖𝑥𝑒𝑙 − 𝑟𝑜𝑢𝑛𝑑 (𝑢𝑝𝑖𝑥𝑒𝑙). A1154
constant PDF means there is no peak locking. The results are presented in figure 22. Some1155
peak-locking is observed in the results. This error is similar for all configurations and is more1156
important in the 𝑥 direction.1157
The peak locking error can be modeled as −𝑎.𝑠𝑖𝑛(2𝜋(𝑢𝑡𝑟𝑢𝑒 − 𝑟𝑜𝑢𝑛𝑑 (𝑢𝑡𝑟𝑢𝑒)) so that1158

𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑢𝑡𝑟𝑢𝑒 − 𝑎.𝑠𝑖𝑛(2𝜋(𝑢𝑡𝑟𝑢𝑒 − 𝑟𝑜𝑢𝑛𝑑 (𝑢𝑡𝑟𝑢𝑒)) + 𝜖𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, where 𝜖𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 is1159
the random noise and 𝑢𝑡𝑟𝑢𝑒 the true displacement with IW filtering effect. However, the1160
peak locking can be estimated as 𝑎.𝑠𝑖𝑛(2𝜋(𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑟𝑜𝑢𝑛𝑑 (𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)) according to1161
Cholemari (2007). The coefficient represents the peak-locking magnitude and it can be1162
evaluated from experimental data using the previous approximation. A correction is added1163
to the contaminated data until the PDF of the rounded part of the displacement is nearly1164
flat. The coefficient 𝑎 used for this correction gives a good estimate of the peak locking1165
magnitude. For all configurations, the maximal value of 𝑎 is estimated to be 0.02𝑝𝑥.1166
It means the peak locking error order of magnitude is around 10 times smaller than the1167
Gaussian PIV noise. However, this error does not necessarily disappear when averaged1168
because it is a systematic error. This is why the consequences of this phenomenon on the1169
results of this study are quantified.1170

A.4. Peak locking impact on spatial energy spectrums1171

The peak locking impact on spatial energy spectrums is evaluated by introducing artificial1172
peak locking into Direct Numerical Simulations (DNS).1173
The DNS dataset was computed by Jean-Philippe Laval from LMFL. It is a 512×512×5121174

pseudo-spectral periodic simulation with 𝑅𝑒𝜆 ≈ 140. The resolution is around 1.6𝜂. The1175
energy spectrum is computed directly from the simulation results and from the results1176
affected by a modeled peak locking:1177

𝑢𝑝𝑒𝑎𝑘𝑙𝑜𝑐𝑘𝑖𝑛𝑔 = 𝑢𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑎 × 𝑠𝑖𝑛(2𝜋(𝑢𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑟𝑜𝑢𝑛𝑑 (𝑢𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)) (A 9)1178

with 𝑎 = 0.02𝑝𝑥.1179
The results are presented in figure 23. The peak-locking does not have any consequence1180

on the spatial energy spectrum except at the very high wavelengths where in reality it will1181
be much more polluted by the PIV noise. Therefore, the experimental results can be used to1182
compute energy spectrums without restrictions.1183
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Figure 23: Peak locking impact on spatial energy spectrum from DNS.

A.5. Peak-locking impact on two-point statistics1184

The peak locking impact on averaged two-point statistics is quantified by introducing a peak1185
locking correction in the experimental data. Then, we evaluate the results evolution after the1186
correction. The correction defined in Cholemari (2007) is used:1187

𝑢𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 𝑎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 × 𝑠𝑖𝑛(2𝜋(𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑟𝑜𝑢𝑛𝑑 (𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)) (A 10)1188

where 𝑎 is estimated for each configuration in 𝑥 and 𝑦 direction.1189
The results are presented in figure 24. No difference is observed between the results with1190

and without peak locking correction. Therefore, the experimental results can be used to1191
compute two-point statistics without restrictions. The results presented in the publication do1192
not contain peak locking correction.1193
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Figure 24: Peak-locking impact on energy interscale transfer rate

A.6. Space averaging impact on results1194

Structure functions are averaged in space to improve convergence as the results collapse is1195
very sensitive to convergence. Therefore, the results are plotted in figure 25a, 25b, 25c and1196
25d without space averaging to check it does not affect results. Only one configuration is1197

presented but it is representative of the four configurations.𝑉𝐼 = 𝑉𝑂 .𝑅
−1/4
𝑂

and 𝑙𝐼 = 𝑙𝑂 .𝑅
−3/4
𝑂

1198

are defined arbitrarily where 𝑙𝑂 = 𝐷 and 𝑉𝑂 =

√︃
𝑢′2𝑥 + 𝑢′2𝑧 . However, it is important to note1199

that 𝑉𝐼 and 𝑙𝐼 are nearly constant over the spatial domain with a variation of less than 3% for1200
the two quantities. The error bars for these results are computed with classical convergence1201
formula. The largest error bar of all positions is used and centered on the spatially averaged1202

structure function (in red). The results collapse within error bars for 𝛿𝑢′2𝑥 /𝑉2𝐼 = 𝑓 (𝑟𝑥),1203

𝛿𝑢′2𝑥 /𝑉2𝐼 = 𝑓 (𝑟𝑧), 𝛿𝑢′2𝑧 /𝑉2𝐼 = 𝑓 (𝑟𝑥) and 𝛿𝑢′2𝑧 /𝑉2𝐼 = 𝑓 (𝑟𝑧), which confirms that space1204
averaging does not distort the results and can be therefore used to improve convergence.1205
These results are also consistent with the inner region structure functions’ similarity assumed1206
in equation 7.2. The outer region is not accessible with our dataset.1207

1208
Third order statistics are even more difficult to converge than second order statistics.1209

Therefore, space averaging is mandatory to converge results. The most critical quantity is the1210
interspace transport as it is computed with space derivatives which can be affected by space1211
averaging. The interspace transport averaged in time and space is compared to the same1212
quantity averaged in time and in space for only one direction (𝑧) but at different 𝑥 locations1213
(figure 26). The results are not well converged due to the number of points reduction. The1214
shape of the non-converged functions at the different 𝑥 positions seems to be consistent with1215
the converged results averaged in space. Therefore, spatial averaging can be used to improve1216
the results convergence without loss of information and without significant distortion of the1217
results.1218
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(a) Time averaged results of 𝛿𝑢′2𝑥 /𝑉2𝐼 in 𝑟𝑥 direction
at different spatial positions.
In red: < 𝛿𝑢′2𝑥 /𝑉2𝐼 >
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(b) Time averaged results of 𝛿𝑢′2𝑥 /𝑉2𝐼 in 𝑟𝑧 direction
at different spatial positions.
In red: < 𝛿𝑢′2𝑥 /𝑉2𝐼 >
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(c) Time averaged results of 𝛿𝑢′2𝑧 /𝑉2𝐼 in 𝑟𝑥 direction
at different spatial positions.
In red: < 𝛿𝑢′2𝑧 /𝑉2𝐼 >

0 50 100 150 200 250 300

r
z
/l

I

0

2

4

6

8

10

Fract. blades F=1.5Hz

(d) Time averaged results of 𝛿𝑢′2𝑧 /𝑉2𝐼 in 𝑟𝑧 direction
at different spatial positions.
In red: < 𝛿𝑢′2𝑧 /𝑉2𝐼 >

Figure 25: Time averaged structure functions at different spatial locations
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Figure 26: Space averaging impact on interspace transport
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