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We show that Kolmogorov scale-by-scale equilibrium in the intermediate layer of8

fully developed turbulent channel flow is only achieved asymptotically around the9

Taylor length and, therefore, not in an inertial range. Furthermore, we analyse10

scale-by-scale turbulence production and interscale turbulence energy transfer in11

terms of alignments/anti-alignments of fluctuating velocities, straining/compressive12

relative motions, forward/inverse interscale transfer/cascade and homogeneous/non-13

homogeneous interscale transfer rate contributions. We also propose leading order14

scalings for second and third order two-point statistics, including the extremum15

interscale turbulence energy transfer rate and a second order anisotropic structure16

function, which acts as a scale-by-scale Reynolds shear stress and determines the17

scale-by-scale (two-point) turbulence production rate.18

Key words:19

1. Introduction20

The Kolmogorov theory of equilibrium cascade works best for statistically stationary21

and homogeneous turbulence where the power input balances the dissipation rate and22

predicts that the interscale transfer rate balances the turbulence dissipation rate in23

an inertial range of scales (Batchelor 1953; Frisch 1995; Lesieur 1997). In particular,24

this inertial range equilibrium cascade leads to the well-known turbulence dissipation25

scaling (Batchelor 1953; Sreenivasan 1984; Vassilicos 2015) first introduced by Tay-26

lor (1935) without justification. In statistically homogeneous but non-stationary, in27

particular decaying, turbulence, the situation is different. Specifically, there is a non-28

equilibrium turbulence dissipation scaling initially during decay, (Vassilicos 2015; Goto29

& Vassilicos 2016) followed at later times by the classical turbulence dissipation as a30

result of balanced non-equilibrium (Goto & Vassilicos 2016; Steiros 2022) rather than31

Kolmogorov equilibrium throughout an inertial range.32
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Lundgren (2002) applied a matched asymptotic expansion approach to freely decaying33

homogeneous isotropic turbulence far from initial conditions, which led to the conclu-34

sion that the interscale transfer rate has an extremum at a length scale rmax that is35

proportional to the Taylor length λ. Wind tunnel data of nominally freely decaying36

homogeneous isotropic turbulence (Obligado & Vassilicos 2019) confirm rmax ≈ 1.5λ and37

EDQNM simulations of such turbulence (Meldi & Vassilicos 2021) confirm rmax ≈ 1.12λ38

for Reλ = 102 to 106. Hence, Kolmogorov equilibrium in non-stationary, in fact freely39

decaying far from initial conditions, statistically homogeneous isotropic turbulence seems40

to be achieved asymptotically only around λ; and not in an inertial range given that λ41

depends on viscosity and total turbulent kinetic energy and that there is a systematic42

departure from equilibrium (most clearly demonstrated in Meldi & Vassilicos (2021))43

when moving away from λ, both towards the integral scale and towards the Kolmogorov44

length η.45

Diverting attention from homogeneous non-stationary turbulence to stationary non-46

homogeneous turbulence, we ask about the validity of Kolmogorov equilibrium in sta-47

tionary non-homogeneous conditions and chose to focus in this paper on fully developed48

turbulent channel flow (FD TCF). This is a statistically stationary non-homogeneous tur-49

bulent flow where turbulence production approximately balances turbulence dissipation50

(similarly to statistically stationary homogeneous turbulence) in some very significant51

region of space, the intermediate layer where the log-law of the wall has been traditionally52

claimed. Is there an average equilibrium between interscale turbulence energy transfer53

rate and turbulence dissipation in the intermediate layer of FD TCF where turbulence54

production approximately balances turbulence dissipation? If so, in what range of length55

scales, inertial or not? What processes are involved in the scale-by-scale turbulence56

energy balance in that range, if there is one, and outside it? What is the role of57

inhomogeneity, in particular in terms of scale-by-scale turbulence production but also58

directly on interscale energy transfer? What type of flow motions underpin interscale59

turbulence energy transfers and scale-by-scale turbulence production (referred to as two-60

point turbulence production in the remainder of this paper)?61

In the following section, we introduce the scale-by-scale turbulence energy balance62

in its most general form and the spherical average operation, which we use to simplify63

it for this study. Section 3 is a brief description of the FD TCF DNS data we utilize64

for our post-processing. In section 4 we simplify the spherically averaged scale-by-scale65

turbulence energy balance for the particular case of the intermediate layer of a FD TCF66

and in section 5 we examine the two-point turbulence production term which appears67

in this balance. Section 6 deals with second and third order structure functions and68

interscale turbulence energy transfer by adapting to FD TCF the matched asymptotic69

expansion approach of Lundgren (2002), and then we compare the results to the DNS data70

in section 7. Finally, section 8 introduces two decompositions of the interscale turbulence71

energy transfer rate and attempts to answer the questions of non-homogeneity’s role and72

of what flow motions are responsible for which aspects of interscale turbulence energy73

transfer. In the paper’s last section, we summarise our conclusions.74

2. Scale-by-scale turbulence energy balance75

To analyse the turbulent energy cascade in turbulent channel flow, we utilize a76

Kármán–Howarth-Monin–Hill (KHMH) equation which is a scale-by-scale energy budget77

equation in its most general form without any assumptions about the flow (Hill 2001,78

2002). The form of KHMH equation that we use is an evolution equation for |δu|2,79

where δu ≡ u(x+ r/2, t)− u(x− r/2, t) is the difference between fluctuating velocities80
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at two points ξ+ ≡ x + r/2 and ξ− ≡ x − r/2 in the flow where the separation vector81

r = (r1, r2, r3) gives some sense of scales. The centroid x = (x1, x2, x3) is mid-way82

between these two points.83

A Reynolds decomposition U+u is used for the velocity field in this form of the KHMH
equation where U = (U1, U2, U3) is the mean flow. The KHMH equation follows directly
from the incompressible Navier-Stokes equations and, with notations U±

i ≡ Ui(x± r/2),
u±
i ≡ ui(x±r/2) and δp ≡ p(x+r/2, t)−p(x−r/2, t) where p is the fluctuating pressure

field, reads as follows:

∂⟨|δu|2⟩
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(2.1)

where the brackets ⟨·⟩ denote the averaging operation on which the Reynolds decompo-85

sition is based. The KHMH equation includes the following terms:86

• At =
∂⟨|δu|2⟩

∂t is the time derivative term.87

• A =
U+

i +U−
i

2
∂⟨|δu|2⟩

∂xi
is the mean advection term.88

• Π = ∂⟨δui|δu|2⟩
∂ri

is the nonlinear interscale transfer rate of |δu|2 by turbulent89

fluctuations in scale space and thus directly linked to the energy cascade.90

• ΠU = ∂δUi⟨|δu|2⟩
∂ri

is the linear interscale transfer rate of |δu|2 in scale space by mean91

velocity differences.92

• P = −2⟨δuiδuj⟩∂δUj

∂ri
− ⟨(u+

i + u−
i )δuj⟩∂δUj

∂xi
is the two-point production of |δu|2 by93

the mean shear.94

• Tu =
∂⟨u

+
i

+u
−
i

2 |δu|2⟩
∂xi

is the turbulent transport of |δu|2 in physical space.95

• Tp = 2∂⟨δuiδp⟩
∂xi

is the pressure-velocity term.96

• Dx = ν
2
∂2⟨|δu|2⟩

∂x2
i

is the viscous diffusion in physical space.97

• Dr = 2ν ∂2⟨|δu|2⟩
∂r2i

is the viscous diffusion in scale space.98

• ε = 2ν⟨
(
∂u−

j /∂ξ
−
i

)2⟩ + 2ν⟨
(
∂u+

j /∂ξ
+
i

)2⟩ is the two-point averaged turbulence99

pseudo-dissipation rate which is very close to the actual turbulence dissipation rate (e.g.100

see Pope 2000).101

At this stage we specialise this equation to FD TCF by chosing the averaging operation102

⟨·⟩ to be over the streamwise and spanwise homogeneous directions, i.e. over coordinates103

x ≡ x1 (streamwise) and z ≡ x3 (spanwise), and over time. The wall normal coordinate is104

y ≡ x2. Note that U2 = U3 = 0 and that this averaging operation implies At = 0 = A. In105

non-homogeneous and non-isotropic turbulent flows (such as FD TCF) energy transfers106

and exchanges, including the turbulence cascade, are anisotropic. This equation has been107

studied extensively in FD TCF by Marati et al. (2004); Cimarelli & De Angelis (2012);108

Cimarelli et al. (2013, 2016); Gatti et al. (2019). In this paper we concentrate our interest109

on the directionally-averaged energy transfers by applying to each term of the KHMH110
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Name Reτ Lx/δ Lz/δ ∆x+ ∆z+ Ny dt+ Nt

LJ950 932 2π π 11.5 5.7 385 8 3151
LJ2000 2003 2π π 12.3 6.2 633 25 462

Table 1. DNS databases

equation an additional average over spheres in r-space. We therefore work with111

Πv +Πv
U = Pv + T v

u + T v
p +Dv

x +Dv
r − εv (2.2)112

where (following Zhou & Vassilicos (2020) and section 2 of Chen & Vassilicos (2022))113

every term is obtained from its analogue in equation 2.1 by the application of the114

normalised 3D integral 3
4πr3

∫
S(r)

d3r, S(r) being the sphere of radius r in r-space; for115

example Πv ≡ 3
4πr3

∫
S(r)

Πd3r, Πv
U ≡ 3

4πr3

∫
S(r)

ΠUd
3r, Pv ≡ 3

4πr3

∫
S(r)

Pd3r, etc.116

This approach averages over and therefore ignores length-scale anisotropies and re-117

places r by its modulus r = |r| as a single measure of length-scale. However, the118

fundamental anisotropy responsible for correlations between streamwise and wall-normal119

directions remains in the turbulence production term. Every term in equation 2.2 is a120

function of only y (spatial non-homogeneity variable) and r (length-scale variable).121

In the following section we describe the data from Direct Numerical Simulations (DNS)122

of FD TCF that we use in this paper. We describe this DNS data before starting our123

analysis of equation 2.2 in order to be able to test against this data certain aspects of124

our analysis as it proceeds.125

3. DNS data126

For our analysis we utilize the DNS data of Lozano-Durán & Jiménez (2014) for FD127

TCF at Reτ = 932 and 2003, (Reτ ≡ uτδ/ν where ν is the kinematic viscosity, δ is the128

channel half-width, and uτ is the skin friction velocity obtained by averaging over time129

and over streamwise coordinate x and spanwise coordinate z at the channel’s solid wall130

y = 0). The domain size for both simulations is Lx = 2πδ in the streamwise and Lz = πδ131

in the spanwise directions. The Navier-Stokes equations have been solved by integrating132

the evolution equations in terms of the wall-normal vorticity and the Laplacian of the133

wall-normal velocity for an incompressible fluid. The Fourier spectral method was used134

for the spatial discretization in the wall parallel directions. For the discretisation in the135

wall-normal direction, Chebyshev polynomials were used in the Reτ = 932 case whereas136

a seven-point compact finite difference scheme was used in the Reτ = 2003 case. Finally,137

a third-order semi-implicit Runge-Kutta method with CFL = 0.5 was chosen for time138

advancement. A comparison of the two datasets can be found in Table 1 (the superscript139
+ refers to non-dimensionalisation with wall units δν ≡ ν/uτ for length and δν/uτ for140

time). We focus our DNS data analysis on the wall-normal locations that correspond to141

the region where the average production rate of turbulent kinetic energy roughly balances142

the average turbulence dissipation rate as identified by Apostolidis et al. (2022), i.e.143

60 ⩽ y+ ⩽ Reτ/2.144
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Figure 1. (a) Turbulent transport Tu plus pressure-velocity term Tp, integrated over the volume
of sphere with radius r, normalised by the volume integral of the two point dissipation rate ε as
a function of r/λ for Reτ = 932, (b) T v

u/ε
v for Reτ = 2003 (Tp is unavailable from the recorded

DNS data at Reτ = 2003), (c) volume integral of linear interscale transfer term divided with εv

Πv
U/ε

v for Reτ = 932, (d) for Reτ = 2003. Wall-normal distance is increased from light to dark
colors (y+ = 59 to 377 for Reτ = 932, y+ = 82 to 665 for Reτ = 2003). The normalisation by
the Taylor length λ (defined in subsection 6.3) is arbitrary in these plots.

4. Scale-by-scale turbulent energy balance in the one-point average145

equilibrium range of FD TCF146

We now examine equation 2.2 in the region of FD TCF, where the average one-point147

turbulence production rate is in approximate equilibrium with the average turbulence148

dissipation rate at a given y. This is a region of distances y from the bottom wall (where149

y = 0) such that δν ≪ y ≪ δ (in the limit Reτ = δ/δν ≫ 1) and where, classically,150

the mean flow velocity U = (U1, 0, 0) is expected to be logarithmic (e.g. see Pope151

2000). Whilst previous works have suggested some not insignificant deviations from a152

log dependence on y of U1 (e.g. see Vassilicos et al. 2015), in this work we assume that153

the log law accounts for most of U1 which implies that ΠU = ∂
∂r1

(δU1⟨|δu|2⟩) is close to 0154

in the region δν ≪ y ≪ δ if r2 ≪ 2y because δU1 = uτ

κ ln 1+r2/y
1−r2/y

≈ 0 (κ is the von Kármán155

dimensionless coefficient and note that wall blocking implies that r2 is necessarily smaller156

or equal to 2y.) The DNS data confirm the prediction that Πv
U is close to zero, see figure157

1(c,d). We also make the assumption that turbulence is well mixed in this region and158

therefore assume that the physical-space divergence term T v
u + T v

p is negligible. Whilst159

the DNS data support this assumption, see figure 1(a,b), it must be stressed that pressure160

plays an important redistributive role and that spatial energy transfer is not fully absent161

in the intermediate layer (e.g. Lozano-Durán & Jiménez 2014; Cimarelli et al. 2016;162

Lee & Moser 2019). The numerical details behind our calculations of normalised 3D163

integrals 3
4πr3

∫
S(r)

d3r, and in particular of terms such as T v
u = 3

4πr3

∫
S(r)

Tud
3r and164

T v
p = 3

4πr3

∫
S(r)

Tpd
3r, are given in the Appendix.165

We therefore neglect both Πv
U and T v

u + T v
p from equation 2.2 and are left with166

Πv ≈ Pv +Dv
x +Dv

r − εv (4.1)167
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for r2 ≪ 2y in the intermediate layer δν ≪ y ≪ δ.168

By application of the Gauss divergence theorem, the interscale transfer rate takes the169

form170

Πv =
3

4π

∫
⟨δu · r̂

r
|δu|2⟩dΩr ≡ S3(r, y)

r
(4.2)171

where Ωr is the solid angle in r space and r̂ ≡ r/|r|. By distinguising between radial172

and solid angle integrations in r-space, the viscous diffusion terms become173

Dv
x +Dv

r =
3ν

8πr3

∫ r

0

ρ2
d2S2

dy2
(ρ, y)dρ+

3ν

πr

dS2

dr
(r, y) (4.3)174

where175

S2(r, y) ≡
∫
⟨|δu|2⟩dΩr. (4.4)176

In FD TCF the production term Pv is obtained by applying the integral operation177
3

4πr3

∫
S(r)

d3r on −2⟨δu2δu1⟩∂δU1

∂r2
−⟨(u+

2 +u−
1 )δu1⟩∂δU1

∂y . Targeting again the intermediate178

region δν ≪ y ≪ δ where the log law dU1

dy ≈ uτ

κy might be considered to be a good179

approximation in the limit δ/δν ≫ 1 (κ is the von Kármán dimensionless coefficient), the180

two-point production term becomes181

Pv ≈ −u3
τ

κy

3

4πr3

∫ r

0

ρ2
[
S12(ρ, y)

u2
τ

− S1×2(ρ, y)

u2
τ

]
dρ (4.5)182

in this intermediate region, where183

S12(r, y) ≡ 2

∫
⟨δu2δu1⟩

[
1−

(
r2
2y

)2
]−1

dΩr (4.6)184

and185

S1×2(r, y) ≡
∫
⟨(u+

2 + u−
2 )δu1⟩(r2/y)

[
1−

(
r2
2y

)2
]−1

dΩr. (4.7)186

We expect S1×2(r, y) to be much smaller in magnitude than S12(r, y), in fact even187

close to vanishing, because of the expected decorrelation between wall-normal velocity188

fluctuations effectively larger than r (i.e. u+
2 + u−

2 ) and streamwise velocity fluctuations189

effectively smaller than r (i.e. δu1). This is confirmed by the DNS data in figure 2,190

which also show that S12(r, y) is negative for all r ⩽ 2y irrespective of y (because of191

wall blocking, r cannot be larger than 2y, and because of the integrand’s singularity in192

the definitions of S1×2(r, y) and S12(r, y) we plot them for r ⩽ 2y − 8δν throughout the193

paper). In the intermediate region where the log law of the wall might be expected to hold194

we therefore have a positive two-point production term given, to good approximation,195

by196

Pv ≈ −u3
τ

κy

3

4πr3

∫ r

0

ρ2
S12(ρ, y)

u2
τ

dρ. (4.8)197

Bringing together 4.2, 4.3 and 4.8 into equation 4.1 we obtain the following two-point198

energy balance valid for r2 ≪ 2y and δ/δν ≫ 1 in the intermediate region δν ≪ y ≪ δ of199

FD TCF:200

S3(r, y)

r
− 3ν

8πr3

∫ r

0

ρ2
d2S2

dy2
(ρ, y)dρ+

3ν

πr

dS2

dr
(r, y) ≈ −εv − u3

τ

κy

3

4πr3

∫ r

0

ρ2S12(ρ, y)dρ.

(4.9)201

In this equation, the first term on the left-hand side is the interscale transfer rate,202
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Figure 2. Ratios of S1×2 in orange colors and S2 in marine colors over S12 for different
normalised scales r/y. Wall-normal distance is increased from light to dark colors as in figure 1.
(a) Reτ = 932, (b) Reτ = 2003.

the second and third terms on the left-hand side are the viscous diffusion terms and the203

second term on the right- hand side is the two-point turbulence production rate. Before204

making use of this equation in the section after next, we look closer into the positive sign205

of the two-point turbulence production.206

5. Two-point turbulence production207

Pv represents the rate with which turbulent kinetic energy is gained or lost by scales208

smaller than r if Pv is respectively positive or negative. Of course, we may expect energy209

to be gained in some r directions and lost in some other r directions: Pv represents the210

rate with which the aggregate energy averaged over all directions is gained or lost at211

scales smaller than r by the linear effects of mean flow gradients on the turbulence. This212

is not a non-linear interscale mechanism relating to a turbulence cascade which is, in213

fact, represented by Πv.214

Turbulence production results from the interplay of non-isotropy in the form of non-215

zero Reynolds shear stresses with the mean flow gradient. In FD TCF the one-point216

Reynolds shear stress is ⟨u1u2⟩ and it interacts with the mean flow gradient dU1

dx2
= dU1

dy217

to give the one-point turbulence production rate −⟨u1u2⟩dU1

dy which is positive (i.e.218

creation of turbulent kinetic energy) because ⟨u1u2⟩ is negative. The negative sign219

of ⟨u1u2⟩ results from the predominance of turbulent transport towards the wall of220

forward streamwise fluctuating velocities and of turbulent transport away from the wall of221

backward streamwise fluctuating velocities. These turbulent momentum fluxes are partly222

caused by sweeps in the case of transport towards the wall and ejections in the case of223

transport away from the wall (Wallace 2016; Kline & Robinson 1990) and lead to the224

well-known increase by turbulence of wall shear stress and skin friction drag.225

The two-point Reynolds shear stress ⟨δu1δu2⟩ results from anisotropies at scales226

comparable to r and smaller and relates to the one-point shear stress by227

⟨δu1δu2⟩ = (⟨u+
1 u

+
2 ⟩ − ⟨u+

1 u
−
2 ⟩) + (⟨u−

1 u
−
2 ⟩ − ⟨u−

1 u
+
2 ⟩). (5.1)228

One can expect the two-point Reynolds shear stress to have the same sign as the one-229

point shear stresses at ξ+ and ξ− (which are known to be negative in FD TCF) if the230
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Figure 3. (a, b) C̃12/|R̃12| integrated over the whole sphere in black lines, conditionally
integrated over anti-aligned pairs in blue lines, and conditionally integrated over aligned pairs
in red lines. (a) Reτ = 932, (b) Reτ = 2003. (c, d) Similarly for C12/|R12|. Wall-normal distance
is increased from light to dark colors as in figure 1.

magnitudes of the two-point correlations ⟨u+
1 u

−
2 ⟩ and ⟨u−

1 u
+
2 ⟩ are decreasing functions of231

distance between ξ+ and ξ−. The two-point Reynolds shear stress appears in the two-232

point turbulence production rate via S12 (see equation 4.8 and the definition 4.6 of S12)233

and we therefore define, for initial simplicity of interpretation, a two-point Reynolds shear234

stress integrated over the solid angle in r-space as follows: S̃12(r, y) ≡
∫
⟨δu2δu1⟩dΩr.235

Defining additionally
∫
⟨u+

2 u
+
1 ⟩dΩr =

∫
⟨u−

2 u
−
1 ⟩dΩr ≡ R̃12(y, r) and

∫
⟨u+

2 u
−
1 ⟩dΩr =236 ∫

⟨u−
2 u

+
1 ⟩dΩr ≡ C̃12(r, y), relation 5.1 leads to237

S̃12(r, y) = 2R̃12(y, r)− 2C̃12(r, y) (5.2)238

in terms of solid angle-integrated one-point Reynolds shear stress R̃12(y, r) and solid239

angle-integrated two-point correlation C̃12(r, y). In figure 3(a,b) we use the DNS data to240

plot C̃12(r, y)/|R̃12(y)| versus r (black lines) for the two Reynolds numbers available and241

for different values of wall distance y. In all cases C̃12(r, y)/|R̃12(y, r)| is a monotonically242

increasing function of r, from C̃12(r, y)/|R̃12(y, r)| = −1 at r = 0 towards 0 with243

increasing r. It follows from 5.2 that the solid angle-integrated two-point Reynolds stress244

inherits the negative sign of the solid angle-integrated one-point Reynolds shear stress245

but with reduced magnitude because of the negative two-point correlation C̃12(r, y) which246

is smaller in magnitude than R̃12(y, r) for all y and all r ̸= 0.247

Inheriting the sign of the one-point Reynolds shear stress means for the two-point248

Reynolds shear stress that sweeps and ejections are contributing to its negative sign.249

However the two-point correlation C̃12(r, y) reduces the proportion of this contribution.250
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Figure 4. (a, b) S̃12 integrated over the whole sphere in black lines, conditionally integrated
over anti-aligned pairs in blue lines, and conditionally integrated over aligned pairs in red lines.
(a) Reτ = 932, (b) Reτ = 2003. (c, d) Similarly for S12. Wall-normal distance is increased from
light to dark colors as in figure 1. The Taylor length λ is defined in subsection 6.3.

Assuming that fluctuating velocities may be approximately aligned within sweep and251

ejection events, particularly for the smaller values of r, we now use the DNS data to252

calculate correlations between u2 and u1 at two different points ξ+ and ξ− conditionally253

on u+ · u− > 0 for aligned pairs of fluctuating velocities and conditionally on u+ ·254

u− < 0 for anti-aligned pairs. We compute the resulting solid angle-integrated conditional255

correlations which we plot in figure 3(a,b) normalised by |R̃12(y, r)| and identify them by256

(⇒) for the aligned and (⇄) for the anti-aligned condition. For both Reynolds numbers257

and for all wall distances tested, the conditional correlations are increasing functions of258

r but positive when the condition is anti-alignement and negative when the condition259

is alignment. Anti-alignment, which is not so expected within sweeps and ejections (but260

may be linked to sweep-ejection pairs), increases the magnitude of the negative value of261

S̃12(r, y), particularly at the larger separations r, whereas alignment, presumably more262

present within sweeps and ejections, actually contributes to reduce the magnitude of263

the negative value of S̃12(r, y). As a result, the part of −S̃12(r, y) that is conditional on264

aligned fluctuating velocities is smaller than the part of −S̃12(r, y) which is conditional265

on anti-aligned fluctuating velocities, particularly at values of r larger than the Taylor266

length-scale (see figure 4). The actual role of the Taylor length appears in the following267

section.268

The two-point Reynolds shear stress determines two-point turbulence production269

via S12(r, y) in the intermediate y-region (see equation 4.8). Our results on S̃12(r, y),270

R̃12(y, r) and C̃12(r, y) and their signs carry over qualitatively to S12(r, y), R12 ≡271

2
∫
⟨u+

2 u
+
1 ⟩[1− ( r22y )

2]−1dΩr and C12(r, y) ≡ 2
∫
⟨u+

2 u
−
1 ⟩[1− ( r22y )

2]−1dΩr (with differences272
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only at values of r close to 2y because of the factor [1− ( r22y )
2]−1 in the integrands which273

tends to infinity for r2 → 2y, see figures 3(c,d) and 4(c,d) and compare them, respectively,274

with figures 3(a,b) and 4(a,b)). The two-point turbulence production is therefore positive275

for all r ⩽ 2y and all y in the intermediate range mainly because one-point turbulence276

production is positive even though two-point correlations conditioned on aligned fluc-277

tuating velocities act to reduce this positivity. Two-point correlations conditioned on278

anti-aligned fluctuating velocities enhance the positive two-point turbulence production279

particularly at the larger separations r.280

6. Interscale transfer rate281

Having analysed the production term in the scale-by-scale turbulence energy balance 4.1282

we now turn our attention to the interscale transfer rate 4.2 and the viscous diffusion283

terms 4.3. We adapt to the scale-by-scale turbulence energy balance 4.9 (which we derived284

from 4.1) the matched asymptotic expansion approach that Lundgren (2002) used to285

study freely decaying homogeneous isotropic turbulence, a very different flow from FD286

TCF.287

The starting point is the hypothesis that S2, S3 and S12 have similarity forms, namely288

S2(r, y) = v2(y)s2(r/l(y), y) (6.1)289
290

S3(r, y) = v3(y)s3(r/l(y), y) (6.2)291
292

S12(r, y) = v2(y)s12(r/l(y), y) (6.3)293

in terms of a characteristic velocity v and a characteristic length l both of which depend294

on wall-normal distance y. In the following two subsections, this hypothesis is made for295

small scales r ≪ lo in terms of an inner characteristic velocity v = vi and an inner296

characterisitic length l = li and is also made for large scales r ≫ li in terms of an outer297

characteristic velocity v = vo and outer characteristic length l = lo.298

From the one-point balance between average turbulence production −⟨u1u2⟩dU1

dy and299

average turbulence dissipation in the intermediate range δν ≪ y ≪ δ it is classically300

claimed, by assuming validity of the log law for the mean flow and its consequence on301

the one-point Reynolds shear stress, that the turbulence dissipation rate equals u3
τ/(κy)302

(e.g. see Pope 2000). Even though there are deviations from both the log law and this303

dissipation scaling (e.g. Dallas et al. (2009); Vassilicos et al. (2015)), we use here the304

relation εv = 4u3
τ/(κy) as an acceptable approximation (in all figures, however, εv is305

computed from the numerical data).306

With εv = 4u3
τ/(κy) and similarity forms 6.1, 6.2 and 6.3, the balance 4.9 becomes

κ

4

v3(y)

u3
τ

s3(r/l(y))

r/y

− 3κy2

32πr3y+

∫ r

0

ρ2
d2[v

2(y)
u2
τ

s2(ρ/l(y))]

dy2
dρ− 3κy2

4πry+
d

dr

[
v2(y)

u2
τ

s2(r/l(y))

]
≈ −1− 3

16πr3

∫ r

0

ρ2
v2(y)

u2
τ

s12(ρ/l(y))dρ

(6.4)

where y+ ≡ y/δν = uτy/ν is a naturally appearing local Reynolds number. The functions308

s2, s3 and s12 have also explicit dependencies on y in equations (6.4), (6.5) and (6.10)309

which are omitted to lighten notation.310

In the limit y+ ≫ 1 within the intermediate range δν ≪ y ≪ δ, which of course also311
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requires the limit Reτ = δ/δν ≫ 1, we consider separately outer similarity with outer312

variables v = vo and l = lo for r ≫ li and inner similarity with inner variables v = vi313

and l = li for r ≪ lo.314

6.1. Outer similarity315

For r large enough, i.e. r ≫ li(y) (where the inner length-scale li is to be determined),
the most natural choice for outer variables is v = vo = uτ and l = lo = y given that
the distance to the wall should somehow determine the size of large eddies and that
their characteristic velocity should scale with the skin friction velocity. With these outer
variables, equation 6.4 becomes

κ

4

s3(r/y)

r/y

− 3κy2

32πr3y+

∫ r

0

ρ2
d2[s2(ρ/y)]

dy2
dρ− 3κy2

4πry+
d

dr
[s2(r/y)]

≈ −1− 3

16πr3

∫ r

0

ρ2s12(ρ/y)dρ

(6.5)

In the limit y+ ≫ 1, viscous diffusion (the second and third terms on the left hand side)317

tends to 0 as 1/y+ compared to the other terms. This equation therefore suggests outer318

asymptotic expansions in integer powers of 1
y+ , which means that the outer similarity319

functions s2, s3 and s12 may be approximated as320

so2(r/y, y
+) = so,02 +

1

y+
so,12 + ... (6.6)321

322

so3(r/y, y
+) = so,03 +

1

y+
so,13 + ... (6.7)323

324

so12(r/y, y
+) = so,012 +

1

y+
so,112 + ... (6.8)325

with leading orders obeying326

κ

4

so,03 (r/y)

r/y
≈ −1− 3

16πr3

∫ r

0

ρ2so,012 (ρ/y)dρ. (6.9)327

The leading order outer scale-by-scale energy balance is therefore a balance between inter-328

scale transfer, turbulence dissipation and two-point turbulence production. (Turbulence329

dissipation appears in this outer balance essentially because the scale-by-scale energy330

balance that we consider concerns the sphere-averaged second order structure function331

which is cumulative with increasing r.)332

6.2. Inner similarity333

For r small enough, i.e. r ≪ lo = y, we seek inner variables of the form v2i = v2o(
1
y+ )

a =

u2
τ (

1
y+ )

a and li = lo(
1
y+ )

b = y( 1
y+ )

b where the exponents a, b are positive because inner
variables should tend to 0 relative to outer ones in the limit where the local Reynolds
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number y+ tends to infinity. With such variables, equation 6.4 becomes

κ

4

(
1

y+

) 3a
2 −b

s3(r/li)

r/li

−O

[(
1

y+

)a+3−2b
]
− 3κ

4π

(
1

y+

)a+1−2b
s′2(r/li)
r/li

≈ −1− 3

16πr3

∫ r

0

ρ2
(

1

y+

)a

s12(ρ/li)dρ

(6.10)

where s′2(r/li) is the derivative of s2 with respect to r/li. In the limit y+ ≫ 1, the two-335

point turbulence production rate tends to 0 as (1/y+)a compared to the dissipation rate336

which is represented in this equation by −1 on the right hand side. At inner scales, the337

leading order scale-by-scale turbulence energy balance must therefore involve interscale338

energy transfer and viscous diffusion to balance dissipation, which implies 3a
2 −b = 0 = a+339

1−2b and therefore a = 1/2 and b = 3/4. In the limit y+ → ∞, i.e. y+ ≫ 1, this equation340

therefore suggests inner asymptotic expansions in integer powers of ( 1
y+ )

a = ( 1
y+ )

1/2,341

which means that the inner similarity functions s2, s3 and s12 may be approximated as342

si2(r/li, y
+) = si,02 +

(
1

y+

)1/2

si,12 + ... (6.11)343

344

si3(r/li, y
+) = si,03 +

(
1

y+

)1/2

si,13 + ... (6.12)345

346

si12(r/li, y
+) = si,012 +

(
1

y+

)1/2

si,112 + ... (6.13)347

with leading orders obeying348

κ

4

si,03 (r/li)

r/li
≈ −1− 3κ

4π
si,0

′

2 (r/li) (6.14)349

where si,0
′

2 (r/li) is the derivative of s
i,0
2 with respect to r/li. The leading order inner scale-350

by-scale energy balance is therefore a balance between interscale transfer, turbulence351

dissipation and viscous diffusion.352

The values a = 1/2 and b = 3/4 that we derived imply that the inner variables are in353

fact Kolmogorov inner variables, i.e. vi = uη ≡ (νεv)1/4 and li = η ≡ (ν3/εv)1/4 (using354

εv = u3
τ/(κy)).355

6.3. Intermediate matching356

Starting with the second order structure function S2, matching the leading term357

u2
τs

o,0
2 (r/y) of its outer expansion for r ≫ η with the leading term u2

τ (
1
y+ )

1/2si,02 (r/η) of358

its inner expansion for r ≪ y leads to359

S0
2 ∼ (εvr)2/3 (6.15)360

as overlapping part of the leading order in the intermediate range η ≪ r ≪ y.361

Similarly,362

S0
12 ∼ (εvr)2/3 (6.16)363

is the overlapping part of the leading order in the intermediate range η ≪ r ≪ y for S12.364

It may be interesting to note, in passing, the difference compared to turbulence non-365

homogeneities with negligible turbulence production but non-negligible spatial turbulence366
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transport such as in certain turbulent wake regions where Chen & Vassilicos (2022) have367

shown that a second order structure function scales as ∼ K(r/L)2/3 where K is the one-368

point kinetic energy, L is an integral length scale, and turbulence dissipation does not369

scale as K3/2/L. Note that the K3/2/L scaling is effectively the scaling assumed here for370

εv because, in the range δν ≪ y ≪ δ considered here, the turbulent kinetic energy scales371

as u2
τ plus logarithmic corrections in y (see Townsend 1976; Dallas et al. 2009) which we372

neglect, and because there are integral length scales in FD TCF which are proportional373

to y, see Apostolidis et al. (2022). The types of non-homogeneity considered by Chen374

& Vassilicos (2022) are opposite to the ones considered here where spatial turbulence375

transport is negligible but turbulence production is not.376

To obtain the leading order of S3, and therefore of the interscale transfer rate Πv via377

equation 4.2, we use equations 6.9 and 6.14. From the leading order outer balance 6.9378

follows379

So,0
3 ≈ −εvr(1−A(r/y)2/3) (6.17)380

where A is a dimensionless constant, and from the leading order inner balance 6.14 follows381

Si,0
3 ≈ −εvr(1−B(r/η)−4/3) (6.18)382

where B is another dimensionless constant. The composite leading order (see Van Dyke383

1964; Cole 1968; Hinch 1991) written directly for the interscale transfer Πv = S3/r is384

So,0
3 /r plus Si,0

3 /r minus their common part −εv, i.e.385

Πv ≈ −εv(1−A(r/y)2/3 −B(r/η)−4/3) (6.19)386

where we now omit superscripts for ease of notation.387

This last equation has the following two verifiable implications, both of which are388

relatively easy to verify with the DNS data at our disposal: firstly it implies that the389

value of r where Πv/εv is minimal and closest to the Kolmogorov equilibrium value -1 is390

rmin ∼
√
δνy ∼ λ (6.20)391

based on the definition λ2 ≡ 10νK/ε (already used by Dallas et al. (2009) in the context392

of FD TCF), and on K ∼ u2
τ and ε ∼ u3

τ/y being good enough approximations in the393

present context for δν ≪ y ≪ δ. Conclusions such as 6.19 and 6.20 have recently been394

obtained by Zimmerman et al. (2022) for the centreline of FD TCF and central axis of395

turbulent pipe flow where turbulence production is effectively absent.396

Secondly, 6.19 also implies that the value (Πv/εv)min of Πv/εv at r = rmin obeys397

1 + (Πv/εv)min ∼ y+
−1/3 ∼ Re

−2/3
λ (6.21)398

where Reλ =
√
Kλ/ν. Consistently with our averages over spheres in r-space, these defi-399

nitions of λ and Reλ ignore some anisotropies of FD TCF. It is possible to define different400

Taylor lengths for different directions so as to take explicit account of anisotropies, which401

is an approach we have taken in another study (Yuvaraj 2022). It may be noteworthy402

that the Corrsin length (Sagaut & Cambon 2018) does not appear spontaneously from403

our analysis whereas the Kolmogorov and Taylor lengths do. The reason for this absence404

of the Corrsin length is that it equals κy at the approximation level of our theory in the405

intermediate layer δν ≪ y ≪ δ and is therefore comparable to the outer bound of the406

range r ⩽ 2y considered here.407

In conclusion, the non-homogeneous but statistically stationary case of FD TCF in408

the intermediate layer δν ≪ y ≪ δ is such that Kolmogorov equilibrium is achieved409

asymptotically around λ and therefore not quite in an inertial range given that λ depends410

on viscosity and that there is a systematic departure from equilibrium when moving away411
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Figure 5. Interscale transfer rate Π (blue lines) and production rate P (red lines), integrated
over the volume of sphere with radius r, normalised by the volume integral of the two point
dissipation rate ε as a function of r/λ. Wall-normal distance is increased from light to dark
colors. (a) for Reτ = 932 and (b) for Reτ = 2003.

from λ, both towards L and towards η, see equation 6.19. (Note, however, that the non-412

zero deviation from Kolmogorov equilibrium as Reynolds number tends to infinity for413

a fixed small value of r/y or for a fixed large value of r/η (necessarily smaller than414

λ/η in the limit) is small). This is the same conclusion that the analysis of Lundgren415

(2002) reached for freely decaying, i.e. non-stationary, but statistically homogeneous and416

isotropic turbulence far from initial conditions. Two-point turbulence production (which417

increases with r as confirmed in the following section) and its variation with wall-normal418

distance play a similar role in FD TCF as the rate of decay of the second order velocity419

structure function (which increases with r because unsteadiness increases with r) and its420

variation with time.421

7. Comparison with DNS data for FD TCF422

In this section we compare the theory of the previous sections with the DNS data423

described in section 3.424

In figure 5(a,b) we plot the two-point turbulence production rate Pv and the interscale425

transfer rate Πv, both normalised by the turbulence dissipation rate εv. We plot them426

versus r/λ because of our prediction that the value of r, where Πv/εv is minimal scales427

with λ. The maximum values of r in the plots are bounded by 2y because of wall-blocking.428

We see that the normalised two-point turbulence production rate Pv/εv increases from429

close to 0 to a little under 1 as r increases from 0 to 2y. This is evidenced for a wide range430

of wall-normal distances y and for both Reynolds numbers at our disposal. It makes sense431

that the two-point turbulence production acts as a generation of turbulent kinetic energy432

at the larger r scales but decreasingly so at smaller and smaller scales till it vanishes at433

the very smallest ones.434

It is also clear from figure 5(a,b) that Πv is negative for all scales and wall-distances,435

indicating a forward, on average, energy cascade for r < 2y. Furthermore, Πv/εv has a436

minimum at rmin close to λ for a wide range of y within δν ≪ y ≪ δ and for both Reynolds437

numbers. This confirms our prediction 6.20 as can be seen in figure 6(a) where we plot,438

in blue, rmin/λ versus y+ for both Reynolds numbers and find that rmin ≈ 1.2λ. One also439
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Figure 6. (a) Values of r/λ where minima of Πv/εv are observed as function of wall distance
y+. (b) Values of 1 + (Πv/εv)min in blue, as a function of Reλ. Dashed line shows a scaling of

Re
−2/3
λ . Circle markers for Reτ = 932, Square markers for Reτ = 2003.

sees in figure 5(a,b) that (Πv/εv)min increases in magnitude with increasing y+ and with440

increasing Reτ . This is confirmed in figure 6(b) where we plot, in blue, 1 + (Πv/εv)min441

versus Reλ confirming that −(Πv/εv)min increases towards 1 following our prediction442

6.21 which collapses both the y+ and the Reτ dependencies of −(Πv/εv)min. Note, in443

passing, that the values of Reλ are not so high for the present Reτ values of about 1000444

to 2000: they range from about 50 to 120 (and in fact reach no more than maximum 200445

at the outer edge of the intermediate y-range if Reτ is pushed up to 5200 as one can find446

in Apostolidis et al. (2022)).447

The imbalance seen in figure 5 between Πv and εv is clear indication that other448

processes in the scale-by-scale energy budget are active. The theoretical arguments449

of subsections 6.1 and 6.2 concluded that the scale-by-scale balance is approximately450

Πv − Pv ≈ −εv at the outer scales and Πv − Dv
r ≈ −εv at the inner scales. This451

prediction is made in the limit Reτ = δ/δν ≫ 1 and δν ≪ y ≪ δ and, as the values452

of Reλ suggest, the Reynolds numbers in the DNS data we are using may not be high453

enough. Nevertheless, figure 7(a, b) does reveal some tendency for (Πv−Pv)/εv to collapse454

as a function of r/y and tend towards −1 at the higher values of r/y as y+ grows, in455

particular for the higher of our two Reynolds numbers Reτ . Furthermore, figure 7(c, d)456

reveals some tendency for (Πv −Dv
r )/ε

v to collapse as a function of r/η as y+ grows and457

even to tend towards −1 at the smallest values of r/η.458

Finally, we compare the high Reynolds number predictions 6.15, 6.16 and 6.19 with459

the DNS data. In figure 8(a, b) we plot S2/u
2
τ (r/y)

2/3 and S12/u
2
τ (r/y)

2/3 versus r/y460

to test outer scalings and in figure 8(c, d) we plot the same quantities versus r/η to461

test inner scalings. Note that we use u3
τ/y as an estimate of εv. Our DNS data lend462

more support to our r2/3 prediction for S12 than for S2, and a better outer collapse in463

terms of r/y of S12/u
2
τ (r/y)

2/3 than S2/u
2
τ (r/y)

2/3. However the inner collapse in terms464

of r/η appears better for S2/u
2
τ (r/y)

2/3 than S12/u
2
τ (r/y)

2/3. At any rate, the values465

of Reλ are quite low in the DNS data used here for a conclusive comparison between466

these data and theoretical predictions made in the double limit Reτ → ∞, y+ → ∞467

(i.e. Reλ ∼ λ/δν ∼ (y+)1/2 → ∞) with the constraint y ≪ δ. In fact, even at the468

very lowest/leading order, our predictions 6.15, 6.16 are incomplete as they should have469
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Figure 7. (a, b) (Πv − Pv)/εv as a function of r/y. (a) for Reτ = 932 and (b) for Reτ = 2003.
(c, d) (Πv−Dv)/εv as a function of r/η for Reτ = 932 in (c) and Reτ = 2003 in (d). Wall-normal
distance is increased from light to dark colors.

corrections in terms of powers of r/η and r/y which are beyond the present theory and470

which surely matter in comparisons with DNS data.471

We close this section with a comparison in figure 9 of 6.19 with the DNS data which472

is clearly better for Reτ = 2003 than Reτ = 932.473

8. Interscale transfer decompositions474

The two main conclusions of the previous sections concern (i) the importance of the475

Taylor length in defining the scale where the normalised interscale transfer rateΠv/εv has476

a minimum and is closest to the equilibrium value Πv/εv = −1 and (ii) the importance477

of sweeps and ejections but also of aligned and anti-aligned pairs of fluctuating velocities478

in determining the sign and magnitude of the two-point turbulence production rate Pv.479

Looking at equation 4.2, we start this section by asking whether aligned and anti-aligned480

pairs of fluctuating velocities also directly affect the interscale transfer rate Πv.481

8.1. Aligned/anti-aligned decomposition482

Equation 4.2 shows that a scale-space flux and a cascade from large to small or from small483

to large scales correspond to a negative or positive 3
4π

∫
⟨ r̂·δur |δu|2⟩dΩr and contributes484

a growth or decrease of TKE at scales r and smaller (see Chen & Vassilicos 2022). Local485

compression, i.e. δu·r̂ < 0, causes local forward cascade and local stretching, i.e. δu·r̂ > 0,486

causes local inverse cascade. Our observation that Πv is negative at all scales means that487

local compressions prevail at all scales, but are they mostly caused by aligned or anti-488

aligned pairs of fluctuating velocities? This question introduces our first decomposition,489
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Figure 8. S12 in orange colors (multiplied by a factor of 3 for ease of comparison) and S2 in

marine colors normalised with u2
τ (r/y)

2/3 as a function of r/y in the first row (a, b) and of r/η
in second row (c, d). Left column (a, c) is for Reτ = 932, right column (b, d) is for Reτ = 2003.
Wall-normal distance is increased from light to dark colors.

Figure 9. Rearrangement of equation 6.19 versus r/y. (a) for Reτ = 932, (b) for Reτ = 2003.
Wall-normal distance is increased from light to dark colors.

namely490

Πv = Πv
⇒ +Πv

⇄ =
3

4π

∫
⟨δu · r̂

r
|δu|2⟩⇒dΩr +

3

4π

∫
⟨δu · r̂

r
|δu|2⟩⇄dΩr (8.1)491

where Πv
⇒ and Πv

⇄ are respectively equal to the first and second terms on the left hand492

side which are calculated using averages ⟨...⟩⇒ conditional on u+ · u− > 0 and averages493

⟨...⟩⇄ conditional on u+ · u− < 0.494
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Figure 10.
∫
⟨δu·r̂⟩dΩr integrated over the whole sphere in black lines, conditionally integrated

over anti-aligned pairs in marine colors, and conditionally integrated over aligned pairs in
orange colors. Wall-normal distance is increased from light to dark colors. (a) Reτ = 932,
(b) Reτ = 2003. (c) r/λ positions of the minima/maxima observed in (a) as a function of
wall-distance y+ for Reτ = 932, similarly in (d) for Reτ = 2003.

Compressive and stretching relative motions may not balance in terms of energy495

transfer, resulting in a non-vanishing Πv, but they do balance in terms of mass transfer496

because of incompressibility which implies
∫
δu · r̂dΩr = 0. Hence,497 ∫

⟨δu · r̂⟩⇒dΩr +

∫
⟨δu · r̂⟩⇄dΩr = 0 (8.2)498

In figure 10 we plot both terms on the left hand side of this equation as functions of499

r for various wall distances y. We also plot
∫
δu · r̂dΩr for comparison and as a check500

that it is indeed zero in the DNS irrespective of r and y. The first observation is that501

aligned fluctuation pairs are stretching relative motions on average given the positive502

sign of
∫
⟨δu · r̂⟩⇒dΩr. The joint PDFs of figure 11 show that relative motions of aligned503

fluctuation pairs are stretching as a result of δu having a tendency to be directed in504

the same direction as the separation vector r for pairs of aligned fluctuating velocities.505

This tendency weakens with increasing r irrespective of wall distance y and, consistently,506 ∫
⟨δu · r̂⟩⇒dΩr tends to 0 with increasing r.507

The second observation in figure 10 is that anti-aligned fluctuation pairs are compress-508

ing relative motions on average given the negative sign of
∫
⟨δu · r̂⟩⇄dΩr. Looking at509

figure 11 it does not seem possible to explain this behaviour purely in terms of velocity510

directions. However, the joint PDFs of figure 12 reveal that the range of values over511

which δu · r̂ fluctuates around zero is much wider for anti-aligned than for aligned512

fluctuations. This effect has to do with the intensity of the fluctuating velocities, not513

only their relative directions. This very wide fluctuation range is slightly skewed towards514

negative values of δu · r̂ for pairs of fluctuating velocities which are anti-aligned, thereby515

accounting for the compressive average behaviour of anti-aligned pairs (u+ ·u− < 0). This516
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Figure 11. Joint probability distribution functions (JPDFs) of δu · r̂/|δu| and

u−u+/
√

|u+|2|u−|2. (a) For Reτ = 932 and wall-distance y+ = 257, four different JPDFs with
increasing scale r/λ = 0.38, 0.57, 1.05 and 2.91. (b) Similarly for Reτ = 2003 and wall-distance
y+ = 456, the JPDFs correspond to scales r/λ = 0.35, 0.56, 1.10 and 3.43. The joint PDFs are
normalised with their maximum value. Above each JPDF, we also plot the conditional PDF of
δu · r̂/|δu|, conditioned on aligned (red lines) and anti-aligned (blue lines) pairs.

skewness diminishes with increasing r irrespective of wall distance y and, consistently,517 ∫
⟨δu · r̂⟩⇄dΩr tends to 0 with increasing r. Note, finally, that it is far more likely to find518

aligned (u+ · u− > 0) than anti-aligned (u+ · u− < 0) pairs as figure 11 shows.519

The third observation in figure 10 is that
∫
⟨δu · r̂⟩⇄dΩr has a minimum at r = rm520

near rmin ≈ 1.2λ for all y and that
∫
⟨δu · r̂⟩⇒dΩr has a maximum at the same value521

r = rm for all y. As seen in the previous two sections, rmin is the value of r where Πv/εv522

has its minimum. In figures 10(c, d) we plot the positions r of the maxima and minima in523

figure 10 versus wall distance for both DNS Reynolds numbers at our disposal. It is quite524

striking that, for all wall distances and both Reynolds numbers tried,
∫
⟨δu · r̂⟩⇄dΩr and525 ∫

⟨δu · r̂⟩⇒dΩr peak at r = rm close to the value r = rmin where Πv/εv peaks and is526

closest to the equilibrium −1 value. Even though rm drifts slightly from rmin ≈ 1.2λ at527

relatively high wall-normal distances, the suggestion is that, in the layer δν ≪ y ≪ δ of528

FD TCF, Kolmogorov-like equilibrium may be achieved at those length scales r where529

aligned fluctuating velocities are stretching with their difference δu maximally or near-530

maximally aligned with the separation vector r and where anti-aligned fluctuations are531

maximally or near-maximally skewed towards large negative values of δu · r̂. This is532



20

(a)

Reτ = 932

(b)

Reτ = 2003

−5

0

5

r/λ = 0.38 r/λ = 0.57

−5 0 5

−5

0

5

r/λ = 1.05

−5 0 5

r/λ = 2.91

−5

0

5

r/λ = 0.35 r/λ = 0.56

−5 0 5

−5

0

5

r/λ = 1.10

−5 0 5

r/λ = 3.43

10−2 10−1 100

P/Pmax(y+ = 257)

10−2 10−1 100

P/Pmax(y+ = 456)

δu · r̂/σ

u
−
u

+
/
σ

Figure 12. Joint probability distribution functions (JPDFs) of δu · r̂ and u−u+. (a)
For Reτ = 932 and wall-distance y+ = 257, four different JPDFs with increasing scale
r/λ = 0.38, 0.57, 1.05 and 2.91. (b) Similarly for Reτ = 2003 and wall-distance y+ = 456,
the JPDFs correspond to scales r/λ = 0.35, 0.56, 1.10 and 3.43. The joint PDFs are normalised
with their maximum value, while the values of x and y axis are normalised with their own
standard deviations.

a conclusion that is well beyond the reach of the theory in section 6 but which we533

might not have been able to reach without it. (We refer to Kolmogorov-like rather than534

Kolmogorov equilibrium because the scale rmin is proportional to the Taylor scale and535

therefore depends on viscosity.)536

It is shown in section 5 that anti-aligned fluctuation pairs enhance the positive two-537

point turbulence production rate in the layer δν ≪ y ≪ δ of FD TCF: we have now seen538

that these anti-aligned fluctuation pairs are on average compressive and figure 13 shows539

that Πv
⇄ is consistently negative, indicating forward cascade. Therefore, anti-aligned540

fluctuations do not only enhance two-point production rate at all r, they also contribute541

a forward cascade at all r in the layer δν ≪ y ≪ δ of FD TCF. Note, however, that the542

minimum value of Πv
⇄ is not at r = rmin where Πv/εv has its minimum value and is543

closest to the equilibrium −1 value. In fact the r-position of the minimum value of Πv
⇄544

does not scale with λ. The scaling of rmin therefore requires taking into account both545

aligned and anti-aligned fluctuations.546

Aligned fluctuation pairs impose a loss of energy on scales smaller than r by mean flow547

interaction with turbulence fluctuations and thereby reduce the one-point effect of sweeps548

and ejections on the two-point turbulence production rate (see section 5). We have now549

seen that aligned fluctuation pairs are on average stretching, which would suggest the550

presence of an average inverse cascade element to the interscale transfer rate Πv
⇒. Figure551

13 shows that Πv
⇒ is positive (though only slightly so), and an average inverse cascade by552

aligned fluctuations is indeed present at scales r larger than about 2 to 3 times λ for the553

Reynolds numbers of the DNS data used here. However, figure 13 also shows that Πv
⇒ is554

negative at smaller scales. Stretching aligned fluctuating motions at scales of the order of555

the Taylor length and below may dominate over compressive aligned fluctuating motions556



21

Figure 13. Decomposition of the interscale transfer term Πv (black lines) into Πv
⇄ (blue lines)

and Πv
⇒ (red lines). (a) Reτ = 932, (b) Reτ = 2003. Wall-normal distance is increased from

light to dark colors.

on average but they do not dominate interscale energy transfer at these scales. There is557

no contradiction with the positive values of
∫
⟨δu · r̂⟩⇒dΩr in figure 10. The different558

signs of this solid angle integral and the solid angle integral in the definition of Πv
⇒559

(see equation 8.1) are an effect of small-scale anisotropies which we are averaging over.560

Future studies of interscale transfers in FD TCFs will need to take these anisotropies561

into account for a finer description of the physics.562

Finally, comparing the plots of Πv in figure 5 with those of Πv
⇒ and Πv

⇄ in figure563

13 shows that Πv
⇄ dominates over Πv

⇒ at scales of the order of λ and larger and is564

mostly responsible for the value of Πv. At smaller scales, however, Πv
⇒ becomes equally565

important and of the same negative sign as Πv
⇄ so that the actual negative value of566

Πv cannot be accounted for by only one or the other: the interscale turbulence energy567

transfers of both aligned and anti-aligned fluctuations matter.568

8.2. Homogeneous/Inhomogeneous energy transfer decomposition569

As already mentioned at the start of sub-section 8.1, the right hand side 3
4π

∫
⟨ r̂·δur |δu|2⟩dΩr570

of equation 4.2 shows that local compression, i.e. δu · r̂ < 0, causes local forward cascade571

whereas local stretching, i.e. δu · r̂ > 0, causes local inverse cascade (see also section 2572

of Chen & Vassilicos (2022)). These compressions and stretches may be caused either by573

turbulence inhomogeneities or by correlated “eddy” motions. In an attempt to formalise574

this distinction, Alves Portela et al. (2020) decomposed the interscale energy transfer575

rate Π = ∂
∂ri

(
δui|δu|2

)
as follows:576

∂

∂ri

(
δui|δu|2

)
=

∂

∂ri

[
δui

(
|u+|2 + |u−|2

)]
− 2

∂

∂ri

(
δuiu

− · u+
)

(8.3)577

where the first term on the right hand side can be rigorously recast into a gradient in578

centroid x-space leading to579

∂

∂ri

(
δui|δu|2

)
=

1

2

∂

∂xi

[
u+
i |u+|2 + u−

i |u−|2 − u−
i |u+|2 − u+

i |u−|2
]
−2

∂

∂ri

(
δuiu

− · u+
)
.

(8.4)580

ΠI ≡ 1
2

∂
∂xi

[
u+
i |u+|2 + u−

i |u−|2 − u−
i |u+|2 − u+

i |u−|2
]
is interpreted as an inhomogeneity-581

related interscale turbulent energy transfer rate. In statistically homogeneous turbulence,582
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Figure 14. Interscale transfer rate (blue lines), inhomogeneous part Πv
I (red lines), and

homogeneous part Πv
H (green lines), all integrated over the volume of sphere and normalised by

the dissipation rate integrated over the volume of the sphere as a function of r/λ. Wall-normal
distance is increased from light to dark colors. (a) for Reτ = 932 and (b) for Reτ = 2003.

the average ⟨ΠI⟩ is indeed zero and the interscale turbulent energy transfer rate is only583

accountable to ΠH ≡ −2 ∂
∂ri

(δuiu
− · u+) on average.584

Integrating Π, ΠI and ΠH over the sphere of radius r in r-space to obtain Πv, Πv
I585

and Πv
H respectively and then applying the Gauss divergence theorem we obtain586

Πv = Πv
I +Πv

H =
3

4π

(∫
⟨δu · r̂

r
(|u+|2 + |u−|2)⟩dΩr − 2

∫
⟨δu · r̂

r
(u− · u+)⟩dΩr

)
.

(8.5)587

This decomposition is partly related to the one of sub-section 8.1 because Πv
H is linearly588

dependent on correlations between δu · r̂ and u− · u+, and the sign of u− · u+ indicates589

whether velocity fluctuation pairs are aligned or anti-aligned which is the basis of590

decomposition 8.1. Whilst it follows immediately from equation 8.4 that Πv
I = 0 if the591

term inside the x-gradient in that equation is statistically homogeneous, equation 8.5592

shows that Πv
I = 0 if δu · r̂ and (|u+|2 + |u−|2) are uncorrelated and if (|u+|2 + |u−|2)593

is statistically homogeneous. Of course this is not the only and necessary way for Πv
I to594

vanish. In particular, there may be cases of non-homogeneity for which Πv
I vanishes too,595

for example cases where Πv
I vanishes but ΠI does not.596

In figure 14 we plot the terms Πv
I and Πv

H in 8.5 normalised by the volume integral597

of the dissipation. For both Reynolds numbers, we observe that Πv
H dominates and598

describes almost perfectly the full interscale transfer Πv for all scales r ⩽ 2y in the599

intermediate range of the channel (y between multiples of δν and about half δ). The600

average interscale transfer from large to small scales is nearly fully described by the601

negative value of Πv
H and the inhomogeneity-related interscale transfer rate Πv

I is close602

to zero. In a different non-homogenous turbulent flow, the turbulent wake of a square603

prism, Alves Portela et al. (2020) found a significant contribution of the inhomogeneity-604

related interscale transfer rate to the total interscale transfer rate. It is therefore not605

trivial that in FD TCF Πv
I is negligible compared to Πv

H in spite of the statistical non-606

homogeneity of the FD TCF. However, this is partly an artifact of the integration over607

spheres in r-space which we apply to ΠI to obtain Πv
I . If we lift this integration and use608

the DNS data to compute ΠI(y, r1, r2, r3) as a function of r2/y for various values of wall-609
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Figure 15. Π (blue markers), ΠI (red lines) and ΠH (green lines) normalised with the two
point dissipation rate ε versus the wall-normal scale r2 divided with y. (a) Reτ = 932, from left
to right we increase the streamwise scale r1 and from top to bottom the spanwise scale r3. (b)
Similarly for Reτ = 2003. Wall-normal distance is increased from light to dark colors.

normal distance y and various values of r1 and r3, we find (figure 15) that ΠI(y, r1, r2, r3)610

is close to 0 and negligible in most cases except for “attached eddies”, i.e. for values of611

r2 relatively close to 2y (wall blocking implies r2 ⩽ 2y) where it is positive, thereby612

potentially reflecting interscale transfer from small to large scales (similarly to Cimarelli613

et al. 2016; Cho et al. 2018) except for r2 near-equal to 2y where it is negative. The614

non-vanishing inhomogeneity-related interscale transfer of “attached eddies” is averaged615

out when we integrate ΠI to obtain Πv
I .616

Returning to Πv
H and the fact that it has very similar dependencies on r and y as Πv,617

we note in particular that Πv
H has a minimum at the near same r ≈ rmin where Πv has618

a minimum, and even that the minimum value of Πv
H closely obeys the same relation619

6.21 that Πv
min obeys (see figure 16). As seen in section 6, the two-point separation scale620

r = rmin demarcates between smaller values of r where Πv is balanced by dissipation and621

viscous diffusion and larger values of r where Πv is balanced by dissipation and two-point622

turbulence production. However, the theory of section 6, which is conclusive for Πv, has623

no say on Πv
H and can therefore not explain our observation that Πv

H behaves very much624

like Πv. We therefore adopt a different point of view from the one of section 6 and look at625

PDFs of instantaneous (in time) and local (in (x, z) planes) interscale transfer rates πv ≡626
3
4π

∫
δu·r̂
r |δu|2dΩr, π

v
H ≡ − 3

2π

∫
δu·r̂
r (u− ·u+)dΩr and πv

I ≡ 3
4π

∫
δu·r̂
r (|u+|2+|u−|2)dΩr.627

Clearly, Πv = ⟨πv⟩, Πv
H = ⟨πv

H⟩ and Πv
I = ⟨πv

I ⟩.628

In figure 17 we plot examples of PDFs of πv, πv
H and πv

I for a couple of wall distances y629

within the intermediate range δν ≪ y ≪ δ and for different values of separation scale r in630

order to see how these PDFs evolve with varying r. As pointed out by Alves Portela et al.631

(2020), at r = 0 we have Πv = Πv
H = Πv

I = 0. As r progressively increases, the PDFs of632
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πv and πv
H move to the left towards increasingly negative values as shown in the inserts633

of plots (a), (b), (e) and (f) in figure 17. This overall PDF drift is most pronounced at the634

smaller values of r and causesΠv andΠv
H to progressively decrease below 0 as r increases.635

However, the skewnesses of the PDFs of πv and of πv
H grow from negative values close636

to −10 at the smallest separations r to values between −1 and even slightly positive as637

r grows (see plots (a), (b), (e) and (f) in figure 18). This evolution of the skewnesses of638

these two PDFs counteracts their overall drift towards increasingly negative values and639

acts to bring Πv and Πv
H back towards zero as r increases. The minima of Πv and Πv

H640

occur as a result of these two counteracting tendencies, the overall drift dominating at641

scales r smaller than rmin and causing Πv and Πv
H to decrease, the decreasingly skewed642

PDF dominating at scales larger than rmin and causing Πv and Πv
H to increase.643

The PDF of the inhomogeneity-related interscale transfer rates πv
I is radically different644

as far as skewness is concerned (see figure 18). Whilst the PDFs of both πv and πv
H are645

skewed towards forward cascade events at small r and evolve with increasing r towards not646

being skewed or even being slightly skewed towards inverse cascade events, the PDF of πv
I647

is highly skewed towards inverse cascade events at small r and evolves very quickly with648

increasing r towards not being very skewed. It remains only slightly skewed (positively649

or negatively) for all permissible r larger than about 2λ (the word “permissible” refers to650

r ⩽ 2y). The difference is not only that the PDF of πv
I is oppositely skewed to the PDFs651

of πv and πv
H at small r, the equally if not even more important difference is that, as r652

increases, the skewness of πv
I evolves much faster towards small absolute values (which it653

actually reaches at r ≈ 2λ) than the skewnesses of πv
H and πv which evolve much more654

gradually towards values around and larger than −1.655

On the other hand, the PDF of πv
I is similar to the PDFs of πv and πv

H in that656

they all have an overall drift to the left, i.e. towards forward cascading negative values,657

as the separation scale r increases (see inserts of plots in figure 17). In the case of658

the inhomogeneity-related interscale energy transfer rate, this overall PDF drift towards659

forward cascade events is counteracted at small separations r by the significant PDF660

skewness towards inverse cascade events leading to small values of Πv
I . As r increases,661

the drift slows down, and the skewness quickly drops to small absolute values keeping662

values of Πv
I small.663
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Figure 17. Probability density functions (PDFs) of (a, b): πv, (c, d): πv
I and (e, f): πv

H

normalised with their respective maximum probability. The values of the terms are normalised
with their own standard deviation. From light to dark colors the scale r is increased. Left column:
Reτ = 932, right column: Reτ = 2003. Inset is a zoom of the area close to the maximum
probability in lin-lin axes.

In conclusion, the statistics of the inhomogeneity-related interscale transfer rate πv
I are664

very different from those of πv
H and πv. The PDFs of πv

I are characterised by a skewness665

towards inverse cascade events at the small scales in particular, whereas the PDFs of both666

πv
H and πv are characterised by a skewness towards forward cascade events at most scales.667

These PDFs result in relatively small values of Πv
I and in very similar dependencies on668
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Figure 18. Skewness factor of πv in blue colors, πI
v in red colors and of πv

H in green colors as a
function of r/λ, for different wall-normal locations. From light to dark colors the wall-distance
y is increased. (a) for Reτ = 932 and (b) for Reτ = 2003.

separation r of Πv
H and Πv. As the separation scale r decreases from large values close669

to 2y towards the Taylor length λ, the PDFs of both πv
H and πv become increasingly670

skewed towards forward cascading events and the average values Πv
H and Πv become671

increasingly negative. However, as r crosses λ and tends towards even smaller separation672

lengths below λ, these two PDFs drift towards inverse cascading events in their entirety,673

thereby bringing the average values of Πv
H and Πv back towards zero.674

These two counteracting effects of drift and skewness remain and are therefore con-675

firmed if we consider only the tails of the PDFs of πv
H and πv. In the top row of figure 19676

(i.e. plots (a, b)), we plot the average values of πv
H and πv over the samples of relatively677

intense values representing only 1% of all samples. The average of πv
H over its relatively678

intense values depends on y and r very much like Πv
H but with an order of magnitude679

higher values (compare with figure 14). On the other hand, the average of πv
I over these680

relatively intense values is disproportionally affected by the PDF’s positive skewness and681

is therefore positive or close to zero and higher than Πv
I in figure 14 as the cancelling682

effect of the drift is overcome. To concentrate on the drift and minimise the effect of683

the skewness, in the second row of figure 19 (i.e. plots (c, d)) we report average values684

of πv
H , πv

I and πv calculated on the basis of only the most probable part of the PDFs685

representing 20% of all samples. These average values are an order of magnitude smaller686

thanΠv
H ,Πv

I andΠv in figure 14. They are close to zero at the smallest separations r and687

continuously decrease in negative values till they more or less stabilise at large enough r,688

reflecting the effect of overall drift of the PDFs towards forward interscale transfers and689

the fact that this drift stabilises at large enough r. Without the skewness effect, which is690

not as present around the peaks of the PDFs as in their extreme tails, these conditional691

averages (plots (c, d) of figure 19) do not significantly return towards 0 with increasing692

r and therefore look very different from Πv
H , Πv

I and Πv in figure 14. The averages Πv
H ,693

Πv
I and Πv in this latter figure emerge as a weighted sum of the conditional averages in694

plots (a, b) with those in plots (c, d) of figure 19.695

Note, finally, that the skewness dominated r-range of the PDFs of πv
H and πv coincides696

with the r-range where Πv is balanced by turbulent dissipation rate and two-point697

turbulence production. The root cause of this coincidence may be anti-aligned velocity698

fluctuation pairs because they enhance two-point turbulence production (section 5) while699

also being the seat of a significant skewness towards compressive, i.e. forward cascading,700
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Figure 19. (a, b) Πv,e (blue lines), Πv,e
I (red lines) and Πv,e

H (green lines): averages of most
intense events accounting for 1% of all events. (c, d) Πv,p (blue lines), Πv,p

I (red lines) and Πv,p
H

(green lines): averages of most probable events accounting for 20% of all events. Left column
(a, c) for Reτ = 932, right column (b, d) for Reτ = 2003. Wall-normal distance is increased from
light to dark colors.

relative motions (sub-section 8.1). The drift of the PDFs of πv
H and πv towards inverse701

cascades is in fact, a recentering of the PDFs so that their peak values move towards zero702

and is mostly present in the r-range where Πv is balanced by turbulent dissipation rate703

and viscous diffusion (see section 6). At these small scales comparable to λ and below,704

both aligned and anti-aligned fluctuation pairs contribute significantly to Πv (see end705

of sub-section 8.1) and this may be related to the recentering of the PDFs around zero706

interscale transfer rate.707

9. Conclusions708

In this paper, we have considered fully developed turbulent channel flow (FD TCF) and709

have made theoretical predictions concerning its scale-by-scale energy balance averaged710

over spheres in r-space in the double limit Reτ → ∞, y+ → ∞ (i.e. Reλ ∼ λ/δν ∼711

(y+)1/2 → ∞) with the constraint y ≪ δ. At leading order, both the inner and the712

outer scale-by-scale energy balances involve interscale turbulence energy transfer and713

turbulence dissipation, but the inner balance is completed with viscous diffusion, whereas714

the outer balance is completed with two-point turbulence production.715

Previous studies already analysed the Kármán–Howarth-Monin–Hill (KHMH) equa-716
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tion for FD TCF. For example, Cimarelli et al. (2013, 2016) examined the energy flux path717

in reduced spaces r1, r3 and y with r2 = 0 and r2, r3 and y with r1 = 0 (or r1 = Const718

in the case of Gatti et al. (2019)). The omission of one scale-space direction prevents this719

approach from accessing the full interscale transfer picture. Our methodology is different720

and complementary as it does not omit any scale-space direction but integrates over721

spheres in full 3D scale space. Whilst we lose the ability to distinguish between directions722

in scale space, we gain the capability to access decisive information on interscale energy723

transfer and forward/inverse cascade which occur normal to the sphere’s surface in scale724

space.725

The intermediate layer (δν ≪ y ≪ δ) of FD TCF is a non-homogeneous but statistically726

stationary turbulent flow region where interscale turbulence energy transfer has proper-727

ties similar to interscale turbulence energy transfer in freely decaying (i.e. non-stationary)728

homogeneous turbulence far from initial conditions. This paper’s theory predicts that for729

any wall-normal distance y in the intermediate layer, Kolmogorov equilibrium is achieved730

asymptotically only around the Taylor length λ (i.e. for scales which are taken to remain731

a constant multiple of λ in the asymptotic limit) which is not an inertial length given732

that it depends on viscosity and turbulent kinetic energy at y. A similar conclusion was733

reached in previous studies of freely decaying homogeneous turbulence far from initial734

conditions (Lundgren 2002; Obligado & Vassilicos 2019; Meldi & Vassilicos 2021) where,735

as shown here by equation 6.19 for the intermediate layer of FD TCF, there are systematic736

departures from Kolmogorov equilibrium for scales moving away from λ both towards the737

large eddy size (here y) and towards the local (here in y) Kolmogorov length η. DNS data738

for FD TDF confirm these conclusions and also confirm the specific scaling predictions739

6.20 and 6.21: namely, the interscale transfer rate has a forward cascade peak at rmin ∼ λ740

where it tends with increasing Reynolds number towards minus turbulence dissipation,741

i.e. Kolmogorov-type equilibrium, as Re
−2/3
λ . Viscous diffusion is negligible on the large742

r side of this peak whereas turbulence production is negligible on the small r side of743

the peak. A similar peak (where production’s role is played by the time derivative term744

defined in section 2) and similar scalings hold in freely decaying homogeneous isotropic745

turbulence far from initial conditions (Lundgren 2002; Obligado & Vassilicos 2019; Meldi746

& Vassilicos 2021) but for slightly different though related quantities given that, here,747

all the terms in the scale-by-scale turbulence energy budget are averaged over spheres of748

radius r in r-space.749

The DNS data show that two-point turbulence production is positive for all r ⩽ 2y and750

all y in the intermediate layer, and that it increases with two-point separation distance r751

and decreases with increasing y. The two-point turbulence production is positive mainly752

because one-point turbulence production is positive even though two-point correlations753

conditioned on more or less aligned fluctuating velocities act to reduce this positivity.754

Interestingly, pairs of aligned fluctuating velocities may be expected mostly within sweeps755

and ejections, which are regions with a major contribution to the positivity of one-756

point turbulence production (Wallace 2016; Kline & Robinson 1990; Pope 2000). The757

positivity of two-point turbulence production is in fact enhanced by two-point correlations758

conditioned on more or less anti-aligned fluctuating velocities, particularly at larger759

separations r.760

The two-point production rate is a functional (see 4.8) of the second order anisotropic761

structure function S12 defined by 4.6. This structure function is identically zero in762

homogeneous isotropic turbulence, but in the intermediate layer of FD TCF the present763

theory predicts a leading order (εvr)2/3 ∼ u2
τ (r/y)

2/3 behaviour for S12 in the range764

η ≪ r ≪ y. The DNS data provide some, though not entirely conclusive, confirmation765
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for this high Reynolds number scaling but the values of Reλ are probably not high enough766

(between 50 and 120) in the DNS data used here for which Reτ is about 2000 in one case767

and about 1000 in the other.768

The present asymptotically high Reynolds number theory also leads to a leading order769

scaling for the second order structure function S2 which is similar to the centreline770

region of some turbulent wakes in terms of the r2/3 part of the scaling but different771

in terms of the prefactor which is not proportional to the 2/3 power of a turbulence772

dissipation rate in the centreline region of those turbulent wakes (see Chen & Vassilicos773

2022). Different types of non-homogeneity may lead to some important differences in774

second order structure function scalings, an issue which merits future attention. The non-775

homogeneity in the intermediate layer of FD TCF is characterised by significant two-point776

turbulence production and negligible two-point turbulent transport and pressure-velocity777

terms, whereas the non-homogeneity on the centreline of turbulent wakes is inverse, i.e.778

turbulent production is negligible but turbulent transport and pressure-velocity terms779

are not. Future attempts at a physically meaningful classification of non-homogeneous780

turbulent flows may need to start from this paragraph’s observations.781

The opposing roles played by more or less aligned and more or less anti-aligned pairs782

of fluctuating velocities in shaping two-point turbulence production have motivated the783

second part of our DNS study concerning their roles in shaping interscale turbulence784

energy transfer in the intermediate layer of FD TCF. The interscale turbulence energy is785

determined by stretching relative motions responsible for inverse transfer from small786

to large scales and by compressing relative motions responsible for forward transfer787

from large to small scales. It turns out that more or less aligned fluctuation pairs are788

stretching relative motions on average whereas more or less anti-aligned fluctuation pairs789

are on average compressive relative motions. The relative motions of more or less aligned790

fluctuation pairs are stretching on average as a result of δu having a tendency to be791

directed in the same direction as the separation vector r for pairs of aligned fluctuating792

velocities, a tendency which weakens with increasing r irrespective of wall distance y. The793

relative motions of more or less anti-aligned fluctuation pairs are compressive on average794

because the fluctuations of δu · r̂ are skewed towards negative values for such fluctuation795

pairs. This skewness diminishes with increasing r irrespective of y. Incidentally, more796

or less aligned fluctuation pairs are much more likely than more or less anti-aligned797

fluctuation pairs.798

Relative motions of more or less aligned fluctuation pairs are maximally stretching on799

average, and relative motions of more or less anti-aligned fluctuation pairs are maximally800

compressing on average at a separation length r = rm which, for all y, is very close801

to rmin, the separation length where Πv/εv has its minimum. Combining the first and802

second parts of the present study, it appears that, in the layer δν ≪ y ≪ δ of FD TCF,803

an approach to Kolmogorov-like equilibrium with increasing local Reynolds number may804

be achieved at those length scales r where aligned fluctuating velocities are stretching805

with their difference δu maximally or near-maximally aligned with the separation vector806

r and where anti-aligned fluctuations are maximally or near-maximally skewed towards807

large negative values of δu · r̂.808

Even though more or less aligned fluctuation pairs are on average stretching and are809

more frequent than more or less anti-aligned fluctuation pairs, they do not dominate810

interscale turbulence energy transfer, which is nevertheless forward on average, i.e. from811

large to small scales. This is an effect of small-scale anisotropies. At scales of the order812

of the Taylor length and larger the interscale turbulence energy transfer is, in fact,813

dominated by more or less anti-aligned fluctuations. However, at scales smaller than814

the Taylor length, the actual value of the interscale turbulence energy transfer rate815
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results from interscale turbulence energy transfers by both aligned (local inverse cascades)816

and anti-aligned (local forward cascades) fluctuations, both of which are significant and817

cannot be ignored.818

Finally, correlations between stretching/compression relative motions and alignment/anti-819

alignment of fluctuation pairs determine the spherically averaged (in r-space)820

homogeneous part of the interscale turbulence energy transfer rate introduced by821

Alves Portela et al. (2020). The DNS data of FD TCF used here, show that this822

homogeneous part accounts almost completely for the total spherically averaged823

interscale turbulence energy transfer rate in the intermediate layer for all separation824

scales r ⩽ 2y, including the scaling with the Taylor length of the separation r = rmin825

where it peaks and the scaling with Reλ of its peak value, i.e. scalings 6.20 and 6.21. The826

spherically averaged inhomogeneous part of the interscale turbulence energy transfer827

is negligible even though the turbulence is significantly non-homogeneous in FD TCF828

in contrast with the centerline of a turbulent wake which is also non-homogeneous,829

but differently, and where Alves Portela et al. (2020) found a similarly averaged830

inhomogeneous interscale turbulence energy transfer to be significant and in fact quite831

important in the scale-by-scale physics. However, when the spherical average is lifted,832

the average inhomogeneous interscale transfer rate remains close to zero except for833

separation components r2 characterising attached eddies.834

By lifting the average over x, z, t, we obtain PDFs of spherically averaged interscale835

turbulence energy transfer rates and of their homogeneous and inhomogeneous parts.836

The PDFs of the spherically averaged interscale turbulence energy transfer rates and837

of their homogeneous part are very similar and vary with r in a very similar way.838

Their dependence on r is governed by counteracting effects of overall PDF drift towards839

forward cascade values and of diminishing skewness towards forward cascade events with840

increasing r. The approach towards Kolmogorov equilibrium occurs at those scales r near841

the Taylor length where these two counteracting effects balance. The PDFs of spherically842

averaged inhomogeneous interscale turbulence energy transfer rates are significantly843

different as they are characterised by a skewness towards inverse rather than forward844

cascade events at small scales.845

As a final comment, one area that may reveal more information on energy transfer in846

wall-turbulence should be the application of the present paper’s framework to individual847

structural elements of the flow such as intense Reynolds shear stress structures (Lozano-848

Durán & Jiménez 2014), vortex clusters (del Álamo et al. 2006) and uniform mementum849

zones and vortical fissures (Bautista et al. 2019).850
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Appendix A.870

We use two methods for the numerical computation of the normalised 3D integrals of871

equation 2.2. The volume integrals that involve divergence in r space are simplified using872

the Gauss divergence theorem and therefore transformed into surface integrals of the flux873

across the sphere’s surface. We insert a triangulated sphere of 5120 triangles and radius874

r at each x, y, z point of the DNS grid, corresponding to the centre of the sphere, and875

interpolate the velocity and its derivatives, using a trilinear interpolation, at the centres876

of the triangles. Finally, we compute the two-point quantities of interest between the877

antipodal triangles on our sphere, multiply them with the corresponding surface area of878

the triangle, sum all the triangles and divide the result with the volume of the discretised879

sphere.880

For the quantities that we cannot apply the Gauss divergence theorem, we make a local881

cartesian grid of nxl
= 41, nyl

= 81, nzl = 41 points centred at each x, y, z point in space,882

corresponding to the centre of the sphere, and extending from −r to r in all directions.883

We then interpolate (with trilinear interpolation) the velocity and its derivatives at every884

point, which satisfies
√
x2
l + y2l + z2l ⩽ r (xl, yl, zl are the local coordinates), compute885

the two-point quantities and multiply them with the local volume unit dVl = dxldyldzl,886

sum and divide with the volume of the discretised sphere.887
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