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The temporally developing self-similar turbulent jet is fundamentally different9

from its spatially developing namesake because the former conserves volume10

flux and has zero cross-stream mean flow velocity whereas the latter conserves11

momentum flux and does not have zero cross-stream mean flow velocity. It follows12

that, irrespective of the turbulent dissipation’s power law scalings, the time-local13

Reynolds number remains constant and the jet half-width δ, the Kolmogorov14

length η and the Taylor length λ grow identically as the square root of time15

during the temporally developing self-similar planar jet’s evolution. We predict16

theoretically and confirm numerically by Direct Numerical Simulation that the17

mean centreline velocity, the Kolmogorov velocity and the mean propagation18

speed of the Turbulent/Non-Turbulent Interface (TNTI) of this planar jet decay19

identically as the inverse square root of time. The TNTI has an inner structure20

over a wide range of closely spatially packed iso-enstrophy surfaces with fractal21

dimensions that are well defined over a range of scales between λ and δ and22

that decrease with decreasing iso-enstrophy towards values close to 2 at the23

viscous superlayer. The smallest scale on these isosurfaces is around η and the24

length scales between η and λ contribute significantly to the surface area of25

the iso-enstrophy surfaces without being characterised by a well-defined fractal26

dimension. A simple model is sketched for the mean propagation speeds of the27

iso-enstrophy surfaces within the TNTI of temporally developing self-similar28

turbulent planar jets. This model is based on a generalised Corrsin length, on the29

multiscale geometrical properties of the TNTI and on a proportionality between30

the turbulent jet volume’s growth rate and the growth rate of δ. A prediction of31

this model is that the mean propagation speed at the outer edge of the viscous32

superlayer is proportional to the Kolmogorov velocity multiplied by the 1/4th33

power of the global Reynolds number.34
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1. Introduction35

The Turbulent/Non-Turbulent Interface (TNTI) is a thin layer which sharply36

demarcates between turbulent vortical flow and non-vortical flow at the turbulent37

edge of a wide variety of turbulent flows such as turbulent boundary layers, mixing38

layers, jets and wakes (Corrsin & Kistler 1955; da Silva et al. 2014). The TNTI39

propagates relative to the fluid and thereby controls entrainment and resulting40

transfers across it of mass, momentum and various scalar quantities such as heat.41

Determining the local propagation velocity of the TNTI, and in particular its42

scalings, is therefore of central importance.43

The TNTI’s local propagation velocity is often thought of as related to a44

length-scale such as a thickness pertaining to the TNTI or/and a turbulence45

inner length-scale such as the Kolmogorov or the Taylor lengths. The question of46

determining the scalings of local TNTI thicknesses is therefore closely related to47

the question of determining the scalings of local TNTI propagation velocities.48

Cafiero & Vassilicos (2020) and Zhou & Vassilicos (2017) have argued, with49

support from Direct Numerical Simulations (DNS) and laboratory experiments50

of self-similar turbulent wakes and jets, that the average TNTI propagation51

velocity scales as the fluid’s kinematic viscosity divided by a length which is52

the Kolmogorov length in the presence of the classical equilibrium turbulence53

dissipation scaling but is the Taylor length in the presence of the non-equilibrium54

dissipation scaling (Vassilicos 2015).55

The turbulent wakes and jets considered by Cafiero & Vassilicos (2020) and56

Zhou & Vassilicos (2017) are spatially developing wakes and jets whereas many57

DNS studies of turbulent wakes and jets in the literature are concerned with tem-58

porally developing wakes and jets (e.g. da Silva & Pereira (2008); Van Reeuwijk59

& Holzner (2013); Silva et al. (2018) and references therein). The presence of60

non-equilibrium turbulence dissipation scalings has been established in important61

regions of significant extent in spatially developing self-similar turbulent axisym-62

metric wakes (Ortiz-Tarin et al. (2021); Obligado et al. (2016) and references63

therein) and spatially developing self-similar turbulent planar jets (Cafiero &64

Vassilicos 2019). It is in these spatially developing self-similar flow regions that65

the scaling of the average TNTI propagation velocity as the inverse Taylor66

length has been argued by theory and supported by laboratory and DNS data67

of turbulent planar jets and turbulent bluff body wakes (Cafiero & Vassilicos68

2019; Zhou & Vassilicos 2017). However, Silva et al. (2018) have found that the69

average thicknesses of the TNTI and of its viscous superlayer both scale with70

the Kolmogorov rather than the Taylor length in temporally developing self-71

similar turbulent planar jets. Is it that there is no non-equilibrium turbulent72

dissipation scaling, i.e. that the turbulence dissipation scaling is classical, in73

temporally developing self-similar planar jets? Or is it that the average TNTI74

thickness does not trivially relate to the average TNTI propagation speed even75

in self-similar turbulent shear flows? Or is it both, or something else?76

In spatially developing self-similar turbulent jets and wakes, the turbulence77

dissipation scaling impacts on the TNTI propagation speed via its relation to the78

jet/wake width growth (Zhou & Vassilicos 2017; Cafiero & Vassilicos 2020), and79

the jet/wake width growth rate is obtained from mass, momentum and turbulent80

kinetic energy balances (Townsend 1976; George 1989; Dairay et al. 2015; Cafiero81

& Vassilicos 2019). This approach to the estimation of the jet/wake width does82

not seem to have ever been applied to temporally developing turbulent flows83
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even though Gauding et al. (2021) did apply to temporally developing turbulent84

planar jets the self-similar theory of Townsend (1949) (see also Tennekes &85

Lumley (1972)) which uses only momentum balance (but no mass and turbulent86

kinetic energy balances) and a hypothesis on the relation between mean flow87

and Reynolds shear stress profiles which is now known not to be generally true88

(e.g. Dairay et al. (2015); Cafiero & Vassilicos (2019)). To answer the questions89

at the end of the previous paragraph we therefore start by applying the mass-90

momentum-energy approach of Townsend (1976), George (1989), Dairay et al.91

(2015) and Cafiero & Vassilicos (2019) to temporally developing self-similar92

turbulent planar jets in section 2. This allows us to see how the turbulence93

dissipation scaling impacts on the jet width and the mean flow velocity of94

temporally evolving self-similar turbulent planar jets. In section 3 we derive a95

formula for the TNTI’s mean propagation velocity in terms of the jet width96

growth rate and the fractal/multiscale nature of the TNTI. We present in section97

4 our pseudo-spectral DNS with particular attention to spatial resolution and98

control of numerical oscillations given that the TNTI is a very thin region of99

very high enstrophy gradients, and in section 5 we use this DNS to critically100

examine the assumptions and results of our theoretical approach. We report the101

strengths and failings of our formula for the TNTI’s mean propagation velocity102

and conclude with a suggestion for how to overcome the failings. We summarise103

our results in section 6.104

2. Mean Flow Scalings105

The temporally developing planar jet is often favoured in numerical studies106

because of the advantage that the boundary conditions in the streamwise and107

spanwise directions can be taken to be periodic. The initial condition of the planar108

jet is defined in terms of an initial streamwise velocity UJ and an initial jet width109

HJ . The global Reynolds number is ReG = UJHJ/ν, where ν is the kinematic110

viscosity of the fluid. (A precise definition of the initial mean streamwise profile111

U(y) in terms of HJ and UJ used in this paper’s DNS is given in section 4.) The112

transition to the turbulent regime starts by shear layer instabilities present on113

both sides of the jet. After the jet has become fully turbulent, the turbulent jet114

volume expands with time into the irrotational surrounding volume.115

In this section, the time and ReG dependencies of the parameters related to116

the mean flow and the turbulence are investigated. The growth of the mean flow117

profile is of interest because it relates to the outward spread of the TNTI, a point118

which is given quantitative expression in the next section. Following Townsend119

(1976); George (1989); Cafiero & Vassilicos (2019) we start the analysis with the120

Reynolds averaged continuity and momentum equations, where averaging is over121

the two homogeneous/periodic spatial directions and/or over realisations:122

∇ · 〈u〉 = 0, (2.1)123

∂〈u〉
∂t

+ 〈u〉 · ∇〈u〉 = −1

ρ
∇〈p〉+ ν∇2〈u〉 − 〈u′ · ∇u′〉. (2.2)124

125

where the vector u is the instantaneous velocity field and the brackets signify126

averaging.127

Homogeneity/periodicity along x (streamwise) and z (spanwise) coordinates128
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implies ∂〈..〉/∂x = ∂〈..〉/∂z = 0. Defining 〈u〉 = (U, V,W ), these being the129

mean flow components in the streamwise, cross-stream and spanwise directions130

respectively, the relation ∂V/∂y = 0 is reached from eq. (2.1). Because of131

reflectional symmetry with respect to y = 0, y being the cross-stream coordinate,132

we are led to V = 0. The immediate result V = 0 is a very significant difference133

between temporally and spatially developing turbulent jets as V 6= 0 in the134

spatially developing case.135

For high Reynolds number temporally evolving x− and z−periodic/homogeneous136

turbulent jets the momentum equation in the streamwise direction is well137

approximated by138

∂U

∂t
≈ −∂〈u

′v′〉
∂y

(2.3)139

where u′ and v′ are the streamwise and cross-stream fluctuating velocities.140

Integrating eq. (2.3) within one period along y, the following constraint is141

obtained;142

∂

∂t

∫
Udy = 0, (2.4)143

implying that the volume flux is conserved throughout the time evolution of the144

jet. The conservation of the volume flux is another important difference between145

the temporally developing jet and its spatially developing counterpart where it146

is the momentum flux that is conserved (momentum deficit for the spatially147

developing wakes) instead of the volume flux throughout the streamwise direction148

(Tritton 1988).149

At this point, the self-similarity assumption for the mean streamwise velocity150

U is introduced:151

U(y, t) = u0(t)f(y/δ) (2.5)152

where δ(t) is the instantaneous jet half-width, u0(t) is the centreline (y = 0) mean153

flow velocity of the jet and both are time-dependent. Plugging eq. (2.5) for the154

mean streamwise velocity into eq. (2.4) yields the following result;155

u0(t)δ(t) = const ∼ UJHJ . (2.6)156

A popular way to obtain δ(t) and u0(t) for the temporally evolving jet is by157

dimensional analysis based on volume flux conservation. The volume flux being158

constant in time and therefore proportional to UJHJ , one is tempted to argue that159

δ and u0 are functions of UJHJ and time t only, in which case dimensional analysis160

immediately implies δ ∼ (UJHJ)1/2t1/2 and u0 ∼ (UJHJ)1/2t−1/2. However, all161

power laws δ ∼ HJ(tUJ/HJ)a, u0 ∼ UJ(tUJ/HJ)−a are consistent with the162

constant volume flux u0δ = const. ∼ UJHJ and there is no a priori reason why163

δ and u0 should depend on UJHJ rather than on UJ and HJ separately. In fact,164

Cafiero & Vassilicos (2019) have shown that different mean flow scalings exist for165

the spatially developing turbulent planar jet, depending on different turbulent166

dissipation scaling possibilities. If one were to use dimensional analysis based on167

the notion that δ and u0 must depend only on the conserved momentum flux and168

streamwise distance in the spatially developing jet, then one would only obtain169

mean flow scalings compatible with one particular turbulence dissipation scaling170

(the classical equilibrium dissipation scaling) and no other, in disagreement with171

experimental results, see Cafiero & Vassilicos (2019). Thus, in order to obtain172

the most general picture for the temporally developing self-similar planar jet173

Focus on Fluids articles must not exceed this page length
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case, which can also potentially allow for effects of non-equilibrium turbulence174

dissipation, we do not adopt the dimensional analysis we mentioned and continue175

our analysis by deriving the self-similarity of the Reynolds shear stress and by176

introducing the equation for the turbulent kinetic energy, a general turbulence177

dissipation scaling and self-similarity assumptions for the terms in the turbulent178

kinetic energy equation.179

By inserting the self-similarity relation for U , relation 2.5, into eq. 2.3, by180

integrating over y both sides of eq. 2.3 from 0 to y, and by making use of 〈u′v′〉 = 0181

at y = 0, we easily show that the Reynolds stress also has a self-similar form which182

can be written as;183

〈u′v′〉 = R0(t)g(y/δ), (2.7)184

where R0(t) is given by185

R0 ∼ δ
du0

dt
∼ u0

dδ

dt
. (2.8)186

Note that this is different from R0 ∼ u2
0 which is the assumption made in187

Townsend (1949), Tennekes & Lumley (1972) and Gauding et al. (2021). We188

do not use this assumption here (but the results 2.19 and 2.20 of our analysis189

confirm it in this very particular flow case).190

At this point, we have three unknowns, u0, δ, R0, and two relations, eq. 2.6191

and eq. 2.8. Hence, one more relation is needed. Following Townsend (1976);192

George (1989); Cafiero & Vassilicos (2019) the equation for the x- and z-average193

turbulent kinetic energy K is therefore also incorporated into the analysis:194

D

Dt
K = T + P − ε (2.9)195

where T , P and ε are the x- and z-averaged turbulence transport, production196

and dissipation terms respectively. Due to homogeneity/periodicity in x and z197

and to the fact that the mean velocity component V is 0, the equation reduces198

to the form199

∂

∂t
K = T + P − ε. (2.10)200

Making self-similarity assumptions for the turbulent kinetic energy K, dissipa-201

tion ε and transport and production terms as one entity T + P , i.e.202

K(t, y/δ) = K0(t)e(y/δ), (2.11)203

ε(t, y/δ) = ε0(t)θ(y/δ), (2.12)204

(T + P ) (t, y/δ) = P0(t)τ(y/δ), (2.13)205206

and then plugging these expressions into the eq. 2.10, we obtain207

∂K0

∂t
e− K0

δ

dδ

dt
e′ = P0τ − ε0θ, (2.14)208

where e′ is the derivative of e with respect to y/δ. The coefficients which are only209

functions of t and not of y/δ must be proportional to each other, hence210

∂K0

∂t
∼ K0

1

δ

∂δ

∂t
∼ P0 ∼ ε0. (2.15)211

The first of these proportionalities simply shows that the variables K0 and212

δ have power-law dependencies on time. The remaining useful proportionality213
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relates the turbulence dissipation to the turbulent kinetic energy and the jet214

half-width. We isolate it below as it is one of the additional relations that we215

need:216

K0

1

δ

∂δ

∂t
∼ ε0. (2.16)217

To be useful, this additional relation needs to be complemented by a sepa-218

rate turbulence dissipation scaling for ε0. There are two options: the classical219

dissipation scaling220

ε0 ∼
K

3/2
0

δ
, (2.17)221

and the non-equilibrium dissipation scaling found in various turbulent flows222

including spatially developing turbulent jets and wakes, grid-generated turbulence223

and time-evolving periodic turbulence (both forced and decaying) (Dairay et al.224

2015; Vassilicos 2015; Goto & Vassilicos 2016; Cafiero & Vassilicos 2019; Ortiz-225

Tarin et al. 2021)226

ε0 ∼
(
ReG
Re0

)m K
3/2
0

δ
, (2.18)227

with m = 1 except for slender body wakes (Ortiz-Tarin et al. 2021) where m = 2.228

Unlike ReG, which is the global Reynolds number (independent of time), Re0 is229

the local Reynolds number (time-dependent) defined by Re0 =
√
K0δ/ν. With230

eq. 2.18, the dissipation scaling is actually written in a general way which also231

includes the classical dissipation scaling as a special case for which m = 0.232

To complete our analysis and obtain δ(t) and u0(t), the additional relations that233

we use are eq. 2.16, eq. 2.18 and Townsend’s assumption K0 ∼ R0 (Townsend234

1976) which is only needed, in fact, if m 6= 1. Combining with u0δ0 ∼ UJHJ (eq.235

2.6) and R0 ∼ u0
dδ
dt

(eq. 2.8), one obtains the following scalings (where t0 is a236

virtual time origin):237

u0 ∼ (UJHJ)1/2(t− t0)−1/2, (2.19)238

δ ∼ (UJHJ)1/2(t− t0)1/2, (2.20)239240

irrespective of the value of m. It follows, in particular, that the local Reynolds241

number Re0 is constant in time irrespective of m. This Reynolds number con-242

stancy is a consequence of our analysis, not its premise. Note also that dδ2/dt is243

a constant proportional to UJHJ . In terms of a dimensional constant coefficient244

A we write dδ2/dt = AUJHJ .245

An important observation here is that the mean flow scalings are independent246

of the turbulent dissipation scaling relation, contrary to the spatially developing247

turbulent planar jet where different centreline mean velocity and jet width scal-248

ings are present for different turbulent dissipation regimes (Cafiero & Vassilicos249

2019). In other words, for the temporally developing turbulent planar jet, the250

mean flow scalings are the same for all values of m, which includes the classical251

dissipation (m = 0) and the non-equilibrium dissipation (m = 1) cases. It is252

therefore not possible to distinguish between different dissipation scaling regimes253

from the time evolution of the temporally developing planar jet flow.254
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3. TNTI Propagation Velocity255

With the time dependencies of the mean flow parameters obtained, a relation256

for the mean propagation velocity of the TNTI can also be found. Following257

Van Reeuwijk & Holzner (2013) and Zhou & Vassilicos (2017), a relation between258

growth rate of the turbulent jet volume in time and the TNTI propagation speed259

can be written;260

dVJ
dt

= Svn (3.1)261

where VJ stands for the turbulent volume, S stands for the surface area of the262

TNTI bounding this volume and vn stands for the mean interface propagation263

velocity. In this paper we follow this global/integral approach to our theoretical264

and computational estimates of the propagation velocity which, as shown by265

Van Reeuwijk & Holzner (2013), is consistent with the local approach which266

requires highly resolved calculations with low numerical noise of first and second267

order derivatives of vorticity, particularly at the outer edge of the TNTI layer268

(see section 4 and Appendix A).269

Substituting VJ = 2aδLxLz where a is a dimensionless constant coefficient and270

Lx and Lz are the extents of the domain in the streamwise and spanwise directions271

respectively, the relation can be written as272

dδ(t)

dt
2aLxLz = Svn. (3.2)273

In various previous studies, the TNTI defined in terms of passive scalar fields274

is found to have fractal or fractal-like properties, either with a constant fractal275

dimension over a range of scales (Sreenivasan et al. 1989; Prasad & Sreenivasan276

1990) or with a scale-dependent fractal dimension (Miller & Dimotakis 1991;277

Dimotakis & Catrakis 1999) which may actually also vary with the threshold278

defining the boundary of the turbulent region (Lane-Serff 1993; Flohr & Olivari279

1994). By taking into account an assumed fractal or fractal-like nature of the280

interface, the surface area of the TNTI can be estimated with the following281

relation;282

S(r) ∼ LxLz
(

r

δ(t)

)2−Df

, (3.3)283

where r is the length scale with which the surface area is measured (see Man-284

delbrot (1982)), the outer length is assumed to be δ(t) which is of the order of285

the integral scale, and Df is the fractal dimension of the interface, with a value286

in the range 2 6 Df < 3. Considering that the interface cannot have contortions287

of size smaller than the thickness of the interface, the smallest length scale on288

the interface can be considered to be the TNTI thickness, ηI . In this section we289

neglect the complex inner structure of the TNTI layer and espouse a relation290

between ηI and the mean propagation velocity of the type291

ηI = ν/vn, (3.4)292

which recognises the effect of viscous diffusion of enstrophy at the interface293

(Corrsin & Kistler 1955) (In subsection 5.6 we modify this relation in an attempt294

to take into account the fact that viscous superlayer is only the outer part of the295

TNTI layer). We therefore estimate S by setting r proportional to ηI in eq. 3.3296
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in a way which models S as297

S = LxLz

(
ηI
δ(t)

)2−Df

. (3.5)298

Using this formula eq. 3.5 for S with eqs. 3.2 and 3.4, the following relation is299

obtained for the TNTI’s mean propagation velocity:300

vn
UJ

= (Aa)1/(Df−1)HJ

δ
Re
−(Df−2)/(Df−1)
G , (3.6)301

where we made use of the dimensionless constant coefficient A in dδ2/dt =302

AUJHJ . It can be seen from eqs. 3.6 and 2.20 that the average propagation303

velocity of the TNTI scales as the inverse square root of time and that it scales304

with the global Reynolds number raised to a power depending on the fractal305

dimension of the interface.306

We want to compare eq. 3.6 for vn to the scalings of the characteristic velocities307

of the flow, u0 ∼ (UJHJ)1/2(t− t0)−1/2 and uη ≡ ν/η where η is the Kolmogorov308

length η ≡ (ν3/ε0)
1/4 in terms of the centreline (y = 0) turbulence dissipation rate309

ε0 (averaged over x and z). Firstly, we find vn/u0 ∼ Re(2−Df )/(Df−1)
G which means310

that vn/u0 is independent of time and depends on the initial volume flux only311

through ReG as it depends on ReG raised to a power equal to (2−Df )/(Df − 1).312

From η ≡ (ν3/ε0)
1/4, eq. 2.18, K0 ∼ R0 and eq. 2.20 follows313

η ∼ (UJHJ)1/2Re
−3/4
G (t− t0)1/2 (3.7)314

and therefore315

uη ∼ (UJHJ)1/2(t− t0)−1/2Re−1/4G . (3.8)316

Hence vn/uη ∼ Re
(2−Df )/(Df−1)+1/4
G meaning that vn and uη have the same317

dependence on time, but the same dependence on ReG only if Df = 7/3. Note318

that the maximum possible fractal dimension Df = 3 corresponds to vn ∼ uλ319

where uλ ≡ ν/λ, the Taylor length λ being obtained from ε0 ∼ νK0/λ
2 and320

scaling as321

λ ∼ (UJHJ)1/2Re
−1/2
G (t− t0)1/2. (3.9)322

It follows that uλ scales as323

uλ ∼ (UJHJ)1/2(t− t0)−1/2Re−1/2G . (3.10)324

The most important implication of these relations is that the time dependencies325

of all the velocities vn, uη, uλ and u0 are the same. Similarly, the turbulent length326

scales η, λ, the TNTI thickness ηI and the jet half-width δ have the same time327

dependencies too. As a result, it is not possible to distinguish whether the average328

TNTI propagation velocity scales with uη or uλ in the temporally developing329

turbulent jet by just monitoring the evolution in time of these velocities. Other330

than that, all these three velocities scale with global Reynolds number ReG raised331

to different powers except if Df = 7/3 in which case vn and uη have the same332

ReG dependence, or if Df = 3 in which case vn has the same ReG dependence as333

uλ.334

The validity of the time dependencies and the fractal characteristics of the335

TNTI are now investigated with data from a DNS of a time-developing turbulent336



9

jet. A study of the ReG dependencies would require many such DNS with a wide337

enough range of high ReG values and remains out of our present scope.338

4. Simulations339

DNS of a temporally evolving turbulent jet are conducted similar to those340

described in the studies of (Van Reeuwijk & Holzner 2013; da Silva & Pereira341

2008; Silva et al. 2018). The global Reynolds number is ReG ≡ UJHJ

ν
= 3200.342

The reference time scale Tref = HJ/(2UJ) is used for time normalization when343

presenting our results.344

The initial mean velocity profile of the jet is defined by (Van Reeuwijk &345

Holzner 2013; da Silva & Pereira 2008);346

U(y, t = 0) =
UJ
2
− UJ

2
tanh

[
HJ

4θ0

(
1− 2|y|

HJ

)]
, (4.1)347

where y = 0 is the centreplane of the planar jet and θ0 is the initial momentum348

thickness. We take HJ/θ0 = 35 as in other studies since this value was reported349

to lead to faster transition compared to lower HJ/θ0 values when perturbed350

(da Silva & Pereira 2008). A high frequency white noise is added on top of the351

mean velocity profile to accelerate the transition to turbulent flow. In order to352

confine the added noise inside the jet region, y = [−HJ/2, HJ/2], the hyperbolic353

tangent velocity profile is used i.e. eq.4.1 by taking UJ = 1. The initial noise354

is multiplied by this function which is equal to one at the centreplane and goes355

smoothly to zero at the border of the jet.356

The energy spectrum of the random velocity field is Enoise(k) = Cnoise exp(−(k−357

k0)
2) where Cnoise is the constant controlling the amplitude and k0 is the358

wavenumber of the energy peak. This peak of the excited wavenumber is chosen359

to be 1.5 times the wavenumber corresponding to the initial shear layer thickness,360

which corresponds to k0 = 75. The shear layer thickness is determined by the361

difference between the value of y where dU/dy = 0.95max(dU/dy) and the value362

of y where dU/dy = 0.05max(dU/dy), max(dU/dy) being the maximum velocity363

gradient on the initial mean profile. The amplitude Cnoise is tuned so that the364

mean enstrophy value of the random fluctuations at the centreplane y/HJ = 0 is365

approximately 4% of the maximum value of the initial mean enstrophy profile.366

This corresponds to velocity fluctuations at the centre of the jet which are 2.45%367

of the initial mean streamwise velocity UJ .368

The domain size of the DNS is (8HJ , 12HJ , 8HJ) and the corresponding grid369

size is (1024 × 1536 × 1024) in directions x, y and z respectively, which leads370

to a homogeneous grid size in every direction. For ensemble averaging, five DNS371

were run, referred to as PJ1, PJ2, PJ3, PJ4 and PJ5. The governing equations372

are solved with a pseudo-spectral solver and a second order Runge-Kutta time373

stepping scheme. Periodic boundary conditions in all directions are compatible374

with V = 0 and ∂〈p〉/∂x = 0, in agreement with the theory in section 2. Apart375

from the 2/3 truncation de-aliasing method of each wavenumber component, a376

filtering function effective at the very high end of the resolved wavenumbers is377

also applied to reduce the oscillations appearing in the outer edge of the TNTI378

layer and the irrotational region outside of the turbulent bulk of the jet.379

Indeed, as the enstrophy value on the non-turbulent side of the TNTI goes to380

zero, the presence of weak numerical oscillations inherent to the spectral method381

limits the detection of the very outer edge of the TNTI, the TNTI being a very382
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(a) (b)

Figure 1: (a) Taylor Reynolds number, Reλ and (b) spatial resolution
dy = HJ/128, normalised by the Kolmogorov scale at the centreplane of the jet

(y = 0). The five different curves correspond to our five DNS realisations.

thin region with very high enstrophy gradients. In order to be able to improve383

the quality of the detected TNTI, a few trials have been made. First, a posteriori384

filtering of the velocity field by spectral filters was tried. Secondly, a priori filtering385

was applied to the non-linear term simultaneously with the 2/3 truncation. A386

priori filtering was observed to be more effective than a posteriori filtering, so it387

was preferred and further investigated.388

This filtering is obtained by the modification of the classical spectral cut-389

off filter applied, namely the 2/3 truncation, for de-aliasing of the pseudo-390

spectral method. More details concerning the reasons why the modified de-391

aliasing procedure was used and how it improved the quality of the data, can392

be found in the appendix A along with the energy and dissipation spectra at the393

centreplane of the jet. For the modified de-aliasing method, a filter function R(|~k|)394

(where ~k = (kx, ky, kz)) has been applied in the form R(|~k|) = 2 − exp(c1(|~k| −395

kfilter)
2) where c1 is a coefficient chosen to fix the value R(kcut−off ) = 0.01.396

The wavenumbers with |~k| < kfilter are completely unaffected from the filtering397

and the wavenumbers with at least one component greater than the cut-off398

wavenumber, i.e. max[(kx, ky, kz)] > kcut−off , are truncated. The wavenumbers399

with |~k| > kfilter but max[(kx, ky, kz)] < kcut−off are then filtered by using the400

function R(|~k|). Due to the shape of R(|~k|), the effect of this modified de-aliasing401

is only limited to the wavenumbers very close to the cut-off wavenumbers, which402

is presented in the appendix A.403

Figure 1a shows the Reynolds number defined in terms of the Taylor length404

scale λ =
√

10νK0/ε0, where the K0 and ε0 are the kinetic energy and dissipation405

averaged over the centreplane (y = 0). Reλ = (
√

2/3K0λ)/ν remains constant at406

about Reλ ∼ 45− 65 throughout the time evolution of the jet after transition to407

fully turbulent regime. Given that ν/
√
Kc ∼ η(η/δ)1/3, the constancy of Reλ408

in time is one indication that the turbulent length scales of the flow evolve409

similarly in time as expected from the previous section. Figure 1b shows that410

the spatial resolution remains at all times higher than the Kolmogorov length411

calculated in the centreplane y = 0. This resolution is observed to be critical412

for the postprocessing in this study as it is directly related to the accurate413

resolution of the geometrical properties of the TNTI. Appendix B shows results414

from simulations conducted with higher Reynolds numbers by making a trade-off415

with the resolution and demonstrates the necessity for the high grid resolution416

favoured in the present study.417

Rapids articles must not exceed this page length
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Figure 2: Profiles of mean streamwise velocity U , streamwise velocity rms urms,
Reynolds shear stress 〈u′v′〉, and turbulent kinetic energy K, normalized by the

maximum values of the respective profiles and compared with experimental
data from Cafiero & Vassilicos (2019) ( ), Ramaprian & Chandrasekhara (1985)

( ) and Gutmark & Wygnanski (1976) ( ).

5. Results418

5.1. Self-similarity and length-scales419

The analysis of the DNS data starts with mean profiles in order to determine420

the self-similar region where the investigation of the TNTI is to be conducted. In421

order to determine the time when the jet becomes self-similar, mean profiles of422

the streamwise velocity, turbulent kinetic energy and the 〈u′v′〉 component of the423

Reynolds stress are considered. Self-similarity means that statistics evolve with424

a time-local amplitude scaling and a time-local length scale, i.e. φ0(t) and `(t),425

so that the time dependent y-profile of an x- and z-averaged quantity φ can be426

written in the form (Townsend 1976),427

φ = φ0(t)f(y/`(t)). (5.1)428

For the investigation of the self-similarity of the mean flow profiles, we start by429

normalizing the profiles by using the jet half-width δ(t) (defined as the absolute430

value of y where U(y) is U(0)/2) as time-local length-scale, see figure 2. In order431

to distinguish between self-similarity and scaling, the profiles are normalised in432

figure 2 by their maxima (Dairay et al. 2015).433

With a similar DNS, da Silva & Pereira (2008) report that the self-similar434

regime starts at t/Tref ≈ 20 which is after the transition to turbulence has435

happened. In another study of the same flow, Van Reeuwijk & Holzner (2013)436

report that the jet becomes fully turbulent at t/Tref ≈ 30. Looking at figure437

2, it is observed that the mean flow, Reynolds stress, rms streamwise velocity438

and turbulent kinetic energy profiles collapse rather well as functions of y/δ(t)439

for t/Tref > 30 in the present simulations: t/Tref = 30 marks the beginning of440
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(a) (b)

Figure 3: (a) Time variation of the square of the jet half-width, δ2. Red dashed
line is the linear fit to the data for times when the jet is fully turbulent and

mean profiles are self-similar. (b) Ratios λ/η (solid line) and δ/λ (dashed line),
demonstrating the similar time evolution of all length scales of the flow.

the self-similar regime, and as shown in figure 1a, it is also when the Taylor441

length Reynolds number starts remaining about constant in time. In figure 2, the442

self-similar profiles are also compared with the experimental data of Gutmark &443

Wygnanski (1976); Ramaprian & Chandrasekhara (1985); Cafiero & Vassilicos444

(2019), showing good collapse between the present data and the profiles obtained445

in the experiments.446

Figure 3a shows the time evolution of the normalized square of the jet half-447

width, i.e. δ2/H2
J .448

The data plotted in figures 2 and 3a are ensemble averages over the five449

simulations (as well as averages over the x − z plane in every simulation, of450

course). A linear fit to the data for t/Tref > 30 shows that δ2 grows linearly451

with time, in agreement with the prediction in section 2. Figure 3b shows ratios452

of length scales, namely η(t)/λ(t) and δ(t)/λ(t) where λ and η are calculated in453

terms of turbulent kinetic energy and dissipation rate at the centreplane y = 0.454

It is observed that the turbulence length scales λ and η evolve similarly in time.455

In addition, the mean flow length scale δ(t) also evolves in the same way, leading456

to the confirmation of the conclusion in section 2 that all length scales grow457

identically with time.458

To extract from the DNS data the scaling quantity R0 of section 2, we identify459

it with 〈u′v′〉max, the maximum value of the Reynolds shear stress profile in figure460

2.461

We find that the Townsend assumption K0 ∼ R0 holds for times t/Tref = 30 to462

t/Tref = 80 (figure 3a). According to the scalings derived in section 2, K0 should463

vary in time like u2
0, where u0(t) ≡ U(y = 0, t), and this is confirmed by our DNS464

data as figure 4a makes clear over an even greater range of times than K0 ∼ R0465

(up to t/Tref = 100). This range of times is greater because the effects of the466

boundary conditions on the time-developing jet appear to be felt first by the467

Reynolds shear stress and later by other quantities such as K0 and u0. We chose468

to process our data from t/Tref = 30 to t/Tref = 100 where self-similarity holds469

and where the constancy of u0δ, related to the volume flux, (eq. 2.6) is definitely470

respected in our DNS (figure 4b). With the exception of fig 4a where K0/R0 start471

deviating from its constancy in time after t/Tref = 80, all the figures where we472

plot quantities versus time do not show a drastic change after t/Tref = 80, which473

is why we chose to process our data till t/Tref = 100 rather than t/Tref = 80.474

There is no effect on our paper’s conclusions.475
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(a) (b)

Figure 4: (a) The ratios K0/R0 and K0/u
2
0 and (b) constancy of the normalised

volume flux between t/Tref = 26 to t/Tref = 98.

5.2. Time dependence of scaling parameters and virtual origin476

The time dependencies of the centreline streamwise velocity scale u0(t) and of477

the jet half-width δ(t), eqs. 2.19 and 2.20, are found to be power laws478

φ(t) = A(t− t0)b (5.2)479

in the theoretical analysis of section 2. It is important to note that these two480

power laws must properly combine to satisfy the governing equations and that481

this can only happen if the virtual origin t0 is the exact same one in eqs. 2.19482

and 2.20 (Nedić 2013; Nedić et al. 2013; Dairay et al. 2015; Cafiero & Vassilicos483

2019).484

There exist various methods for the determination of the exponent b while485

taking proper account of the virtual origin t0 (Nedić et al. 2013; Dairay et al.486

2015; Cafiero & Vassilicos 2019). In the present study, the method used in Cafiero487

& Vassilicos (2019) is implemented on u0(t) ∼ (t− t0)b and δ(t) ∼ (t− t0)−b.488

The procedure starts with initial fits to the u0 data in the form u0 ∼ tb and to489

the δ data in form δ ∼ t−b in agreement with volume flux conservation, eq. 2.6.490

By this step, two approximate values for the exponent b are obtained as initial491

guesses. Then the value of the exponent is varied in a certain range around the492

initial guess in order to find the corresponding t0 values for every value of b. This493

procedure is carried out for both u0 and δ separately. Plotting the resulting (b,494

t0) pairs yields the plot in figure 5, where red and blue colors are differentiating495

the values obtained from the u0 and the δ data. At the point where these two496

lines intersect, the best fit values (b, t0) are the ones which take into account that497

the virtual origin must be identical for both u0 and δ. These values are b = −0.51498

and t0 = 11.7. The time evolutions of u0 and δ in the time range t/Tref = 30 to499

/Tref = 100 and their power law fits with the pair (b = −0.51, t0 = 11.7) are500

shown in figure 6.501

At this point we recall our result of section 2 that, unlike spatially developing502

turbulent jets (Cafiero & Vassilicos 2019), the evolutions (in time) of u0 and δ0 in503

temporally developing turbulent jets are independent of the exponent m in the504

turbulence dissipation law 2.18. The values found for b and t0 from the DNS data505

are compatible with the theoretical value b = −0.5 obtained in section 2 for any506

exponent m.507

5.3. Identification of the turbulent jet and locating the TNTI508

The TNTI is associated with the very high gradients of enstrophy observed509

between the rotational turbulent region and the irrotational outer flow. Thus, it is510

the layer where isosurfaces of very different enstrophy values are spatially stacked511
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Figure 5: The optimal virtual origin t0 as a function of exponent b for the time
evolutions of u0 (blue disks) and δ (red squares). The dashed vertical lines show
the best fit exponent b for t0 = 0 (blue for u0, red for δ) and the green diamond

marks the one value of b for which t0 is the same for both equations 2.19 and
2.20.

(a) (b)

Figure 6: Time variation of u0 (a) and δ (b) with the best power law fits
obtained by the procedure based on figure 5.

very close to each other. In figure 7 we plot the turbulent jet volume, VJ , defined512

as the volume where ω2 > ω2
th, ω2 being the enstrophy of the fluctuating velocity513

field and ω2
th being a threshold enstrophy. In this figure VJ is normalized by514

the domain volume, Vtot, and plotted versus the normalised enstrophy threshold515

values ω2
th/ω

2
ref , where the reference enstrophy ω2

ref is the mean enstrophy value516

averaged over the centreplane. (Note that ω2
ref evolves in time.)517

Figure 7 reveals the presence of a plateau over a very wide range of threshold518

values at any time between t/Tref = 30 and t/Tref = 90. This is the range519

of enstrophies packed tightly together within the TNTI, leading to VJ/Vtot being520

approximately constant for a wide range of ω2
th/ω

2
ref values and thereby reflecting521

the sharp demarcation between the turbulent region and the outer non-turbulent522

region. Starting from the turbulent side of the TNTI and going through the523

interface, the enstrophy rapidly drops from its nearly homogeneous non-zero value524

in the inner region of the jet towards zero within a very short distance which is525

typically of the order of 10η for the Reynolds numbers reachable by current DNS526

(Silva et al. 2018; Nagata et al. 2018).527

The left side of the plateau, corresponding to low enstrophy threshold values,528

is limited by the numerical noise. These numerical oscillations get significant as529
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Figure 7: Detected turbulent volume VJ/Vtot obtained by varying the threshold
values ω2

th/ω
2
ref for one of the simulations (PJ1).

Figure 8: Contour field of ω2/ω2
ref and iso-contours of certain ω2

th/ω
2
ref values

to mark the TNTI layer. Simulation PJ1 at t/Tref = 50.

the threshold value goes to zero. The additional filtering that we introduced to530

reduce the numerical oscillations increases the ω2
th/ω

2
ref range of the plateau by531

extending its left side to values closer to ω2
th/ω

2
ref = 0, as the outer edge of the532

TNTI is cleaner in terms of noise.533

Figure 8 shows a part of the computational domain which includes the turbulent534

jet for PJ1 at t/Tref = 50. The inset is the magnification of a small region around535

the TNTI and shows the isocontours ω2
th/ω

2
ref = 10−6, 10−5, 10−4, 10−3. These536

threshold values are within the enstrophy range of the plateau in figure 7 and537

are therefore within the TNTI. Surfaces which are clean in terms of noise can be538

obtained for a very wide range of enstrophy thresholds from the simulation data.539

Following the determination of the ω2
th/ω

2
ref range defining the TNTI, we now540

determine the TNTI as shown in figure 9. The procedure starts by labeling of541

the turbulent volume by the condition ω2(x, y, z) > ω2
th/ω

2
ref and obtaining the542



16

(a) (b)

Figure 9: (a) The labeling of the turbulent, non-turbulent and engulfed regions,
(b) detected TNTI. For the instant t/Tref = 50 of simulation PJ1,

ω2
th/ω

2
ref = 10−3.

binary field. The turbulent region corresponds to blue marked region in figure 9a543

and the non-turbulent regions correspond to the white and red marked regions,544

where the engulfed regions (shown with red) are still present. Following this, the545

non-turbulent volumes are being labeled in 3D by using the labelling function546

from open-source SciPy library (Virtanen et al. 2020), so that all independent547

non-turbulent volumes have their individual label number. At this stage the548

connectivities of the non-turbulent regions are checked leading to detection of549

engulfed non-turbulent volumes (with no connection in 3D with the external550

irrotational region). Some examples of these detected engulfed volumes can be551

seen in figure 9a, marked in red. The white detached regions inside the turbulent552

area 9a (blue) are connected to the outer non-turbulent region in the 3D field (out553

of the figure’s plane). In order to consider only the outer surface, the engulfed554

volumes are suppressed in this study. To get the surface corresponding to a chosen555

ω2
th/ω

2
ref in 3D, a dilation procedure is used in 3-dimensions to expand the non-556

turbulent region into the turbulent region. Then by subtracting the original field557

from the dilated field, we end up with a field where the 3D jet envelope is558

marked by the number one and all other data points are marked zero in the559

entire simulation domain. A cut-section of the resulting field is shown in 9b, as560

the dark line. This detection procedure is applied for various enstrophy threshold561

values to obtain the interface characteristics at different locations throughout the562

TNTI layer as in Van Reeuwijk & Holzner (2013); Krug et al. (2017).563

5.4. Fractal dimensions of the TNTI564

The theoretical analysis in section 2 relates the fractal dimension of the TNTI565

to the global Reynolds number scaling of the TNTI propagation velocity, see eq.566

3.6. It is therefore important to investigate the fractal/fractal-like properties of567

the TNTI.568

The fractal/fractal-like nature of scalar isosurfaces relating to the TNTI has569

been reported in various studies (Sreenivasan et al. 1989; Sreenivasan 1991;570

Miller & Dimotakis 1991; Lane-Serff 1993; Dimotakis & Catrakis 1999; Mistry571

et al. 2016, 2018). However, these fractal/fractal-like characteristics are described572

somewhat differently in different studies. In some studies, a well-defined power-573

law for the scale dependence of the surface area (thus constant fractal dimension)574

has been reported (Sreenivasan et al. 1989; Sreenivasan 1991; Mistry et al. 2016,575

2018). This is the case where, when one covers the surface with boxes of size of r,576

the number N of boxes needed to fully cover the surface scales as N(r) ∼ r−Df577
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(Mandelbrot 1982) and the fractal dimension Df of the surface is independent578

of r over a significant range of scales r. In other studies of isosurfaces in flows579

such as turbulent jets and mixing layers, a scale-dependent fractal dimension is580

reported, i.e. Df = Df (r), which means that there is no constant value for the581

fractal dimension Df but that the fractal dimension varies with box-size r (Miller582

& Dimotakis 1991; Dimotakis & Catrakis 1999; Catrakis & Dimotakis 1999).583

There is also the question of the enstrophy threshold used to define the TNTI584

because a strong threshold dependence of the fractal dimension of scalar iso-585

surfaces has been reported in some studies (Miller & Dimotakis 1991; Lane-Serff586

1993; Flohr & Olivari 1994). Varying the threshold within the range of thresholds587

where VJ remains about constant is akin to sampling different inner iso-enstrophy588

surfaces within the TNTI layers inner structure (Van Reeuwijk & Holzner 2013).589

There may not be one single fractal dimension for the TNTI, but different fractal590

dimensions for different inner isosurfaces of enstrophy within the TNTI layer, an591

aspect of the problem which needs to be investigated.592

We apply the box-counting procedure to obtain fractal dimensions of iso-593

enstrophy surfaces within the TNTI. Figure 10 shows typical ensemble averaged594

box-counting results, this particular ones being for the isosurface ω2
th/ω

2
ref = 10−3595

at time t/Tref = 50. The plot on the left is a log-log plot of the number N of596

boxes needed to cover the iso-enstrophy surface versus the inverse box size 1/r.597

The linear fit in orange is obtained by using all the points on the plot, and the598

slope of this fit is found to be Df1 = 2.161 for this particular case. On the other599

hand, local slopes are also calculated by fits over 9 consecutive data points on600

this plot. It is observed (see example in figure 10 (right)) that the local slope does601

not remain constant throughout all scales r. An approximately constant fractal602

dimension, seen as a plateau-like region on the right plot of Figure 10, appears603

to exist between r = δ and r = λ for the entire range of isosurfaces of various604

enstrophy threshold values within the TNTI (ω2
th/ω

2
ref between 10−6 and 10−3)605

and for all times where the jet is fully turbulent (local slope values marked by red606

square markers). Note that the constancy of this local fractal dimension is affected607

by the fact that it is calculated by using 9 points around the value of r where the608

local dimension is evaluated. This means that the highly non-constant values of609

the fractal dimension at scales r larger than δ are responsible for deviations from610

constancy at scales close to but below δ; and that the progressive decrease of the611

local slope towards Df = 2 as r decreases at scales r below λ is responsible for612

the systematic deviation from constancy at scales close to yet larger than λ.613

Throughout this study, the fractal dimension is calculated as the average value614

of the local slopes between box sizes r = δ and r = λ, and this fractal dimension615

is denoted Df2. The first point with r smaller than or equal to δ (i.e. the largest616

value of r in the range λ 6 r 6 δ) is excluded from this average so as to reduce617

the oscillation caused by less converged values of N at larger box sizes.618

The fractal dimension Df2 for different enstrophy threshold values in the TNTI619

range ω2
th/ω

2
ref = [10−6, 10−3] is shown in figure 11 as a function of time. The620

fractal dimensions Df2 of the TNTI may be considered to remain approximately621

constant in time for all these enstrophy thresholds and the mean value around622

which Df2 appears to fluctuate is shown by the dashed lines in the figure. For the623

threshold values ω2
th/ω

2
ref = [10−6, 10−3], this fractal dimension value varies from624

Df2 = 2.09 to Df2 = 2.18. It can be observed that the values of Df2 for different625

ω2
th/ω

2
ref get closer to each other towards the lower values of ω2

th/ω
2
ref . It can626



18

Figure 10: Ensemble-averaged results of the box-counting method applied to
isosurface ω2

th/ω
2
ref = 10−3 at time t/Tref = 50. On the left, a plot of the

number of boxes N of size r versus 1/r is shown in log-log scale, the orange line
being the linear best fit for all data points on this plot. The plot on the right

shows the local slope calculated by the fits using 9 consecutive data points, the
value of the local slope being attributed to the centre point. The local slopes

marked as red squares (as opposed to blue disks) are the points used to
calculate Df2. The dashed, dot-dashed and dotted vertical lines locate on the

horizontal axis the length scales δ, λ and η respectively. (λ and η are calculated
on the centreplane.)

Figure 11: TNTI fractal dimensions Df2 versus time t/Tref for different
normalised enstrophy thresholds within the TNTI.

also be argued that an objective definition of the viscous superlayer must include627

within the superlayer, enstrophy iso-values for which the fractal dimension can628

be detected with a value larger than 2.629

A significantly higher value,Df2 = 2.36, has been observed for the iso-enstrophy630

surface defined by the threshold ω2
th/ω

2
ref = 10−2. This value is close to the631

fractal dimension 7/3 ≈ 2.33 reported in various studies (Sreenivasan et al. 1989;632

Sreenivasan 1991; Mistry et al. 2016, 2018). It must be noted that the enstrophy633

threshold ω2
th/ω

2
ref = 10−2 rests on the turbulent side of the TNTI judging from634

the enstrophy range of the plateau showed in figure 7. However, it is also observed635

that the log2N− log2(1/r) plot obtained from the box-counting algorithm for this636

enstrophy threshold shows no evidence of a fractal dimension that is independent637

of r, i.e. there is no significant plateau region in the right plot of figure 12 and638

the local slope varies significantly with r. The value Df2 = 2.36 is obtained by639
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Figure 12: Same as figure 10 but for iso-enstrophy surface ω2
th/ω

2
ref = 10−2 at

same time t/Tref = 50.

averaging over the local fractal dimensions (local slopes in the right plot of figure640

12) from r = λ to r = δ, but these local fractal dimensions vary continuously641

with r from 2.2 to over 2.45.642

5.5. Propagation velocity of the interface643

In section 2 we obtained formula 3.6 for the TNTI’s mean propagation velocity on644

the basis of the fractal/fractal-like character of the TNTI. We now know, following645

the previous sub-section, that the TNTI of our time-developing turbulent jet has a646

range of fractal dimensions Df2 depending on the normalised enstrophy threshold647

ω2
th/ω

2
ref , and that Df2 is a fairly well-defined single number independent of box-648

size r in the range λ 6 r 6 δ if ω2
th/ω

2
ref is in the range [10−6, 10−3]. The question649

which naturally arises now is: does formula 3.6 capture the time and enstrophy-650

threshold dependencies of the mean propagation velocity vn? More specifically,651

can we use Df2 = Df2(ω
2
th/ω

2
ref ) defined in the range λ 6 r 6 δ as the fractal652

dimension in formula 3.6 to accurately capture the time and enstrophy threshold653

dependencies of vn? We stress that in this formula, vn depends on the enstrophy654

threshold only through Df2 given that A is defined in terms of quantities which655

are independent of enstrophy threshold and a in VJ = 2aδLxLz can be expected656

to have a negligibly weak dependence on enstrophy threshold.657

To estimate vn independently from our formula 3.6 we use equation eq. 3.2,658

having first checked the validity of d
dt
VJ = 2aLxLz

d
dt
δ (see figure 13) which is659

needed to go from eq. 3.1 to eq. 3.2. Figure 13 confirms that the dimensionless660

coefficient a is approximately independent of time as it oscillates around the661

constant value a = 1.66 and that it is also very weakly dependent on enstrophy662

threshold over at least four decades.663

To use eq. 3.2 we need a reliable estimate of the TNTI surface area S that664

is different from the fractal estimate 3.3. To obtain such an estimate of S we665

plot r2N(r): as the box-counting algorithm’s box size r decreases and becomes666

small enough to resolve all the contortions of the iso-enstrophy surface, r2N(r)667

reaches a maximum and does not grow further with further decreasing r. We668

take this maximum as our estimate of S, i.e. S = SR ≡ maxr[r2N(r)]. Of course669

S depends on the enstrophy threshold defining the chosen isosurface within the670

TNTI and figure 14a shows an example of a r2N(r) versus 1/r log-log plot for671

ω2
th/ω

2
ref = 10−3 at t/Tref = 50 where the maximum r2N(r) is reached at r close672

to η. In fact, figure 14a is quite typical of normalised enstrophy thresholds in the673

range [10−6, 10−3] and times t/Tref in the range [30, 100].674
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Figure 13: Validity of d
dt
VJ ∼ 2LxLz

d
dt
δ over the time evolution of the fully

turbulent jet.

(a) (b)

Figure 14: (a) log2-log2 plot of r2N(r) versus 1/r, at time t/Tref = 50, for the
threshold value ω2

th/ω
2
ref = 10−3. The horizontal dotted line indicates the

maximum value of r2N(r) (b) SR/(LxLz) ≡ maxr[r2N(r)]/(LxLz) versus time
t/Tref for different enstrophy threshold values.

In figure 14b we plot SR ≡ maxr[r
2N(r)] as a function of t/Tref for various675

normalised enstrophy thresholds. Interestingly, the TNTI surface areas SR remain676

approximately constant in time for all thresholds ω2
th/ω

2
ref = 10−6 to 10−4 from677

t/Tref = 40 to 100 and for threshold ω2
th/ω

2
ref = 10−3 from t/Tref = 50 to 100.678

This is compatible with the fact that all length scales, large and small, grow679

together in this flow.680

We now calculate the average TNTI propagation velocity vn by using eq. 3.2681

with S obtained from SR ≡ maxr[r
2N(r)] and we compare it with formula 3.6.682

Firstly, in figure 15 we check the time-dependence of vn which, according to683

formula 3.6 and δ ∼
√
UJHJ(t− t0), is the same as the time dependence of uη and684

of uλ. In support of this prediction, figure 15 shows that vn/uη and vn/uλ oscillate685

around a constant as time proceeds for all ω2
th/ω

2
ref in the range [10−6, 10−3].686

Secondly, we check the enstrophy threshold dependence of vn which, according687

to formula 3.6, should be vn/uη ∼ (Aa)1/(Df (ω
2
th/ω

2
ref )−1)Re

[2−Df (ω
2
th/ω

2
ref )]/[Df (ω

2
th/ω

2
ref )−1]+1/4

G688

and equivalently vn/uλ ∼ (Aa)1/(Df (ω
2
th/ω

2
ref )−1)Re

[2−Df (ω
2
th/ω

2
ref )]/[Df (ω

2
th/ω

2
ref )−1]+1/2

G .689

We plot vn/uη versus ω2
th/ω

2
ref for various time instants t/Tref in figure 16a;690

and we take our measured Df2(ω
2
th/ω

2
ref ) (averaged over time for simplicity,691

this average being denoted Df2) to represent the fractal dimension Df and692
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Figure 15: Time dependence of vn/uη and vn/uλ.

plot (vn/uη)(Aa)−1/(Df2−1)Re
−(2−Df2)/(Df2−1)
G versus ω2

th/ω
2
ref for various time693

instants t/Tref in figure 16b. If our formula 3.6 is able to capture the enstrophy694

threshold dependence of vn, then (vn/uη)(Aa)−1/(Df2−1)Re
−(2−Df2)/(Df2−1)
G should695

be constant with varying ω2
th/ω

2
ref for all times t/Tref between 30 and 100 with696

a ≈ 1.66 (as already found from figure 13) and A ≈ 0.058 from figure 3a.697

We can clearly see in figure 16a that, irrespective of time, vn decreases with698

increasing ω2
th/ω

2
ref in the TNTI normalised enstrophy range [10−6, 10−3] which699

makes sense because S increases with increasing ω2
th/ω

2
ref . Indeed, we expect Svn700

to be approximately independent of ω2
th/ω

2
ref in the TNTI range of enstrophy701

thresholds, judging from eq. 3.1 and the approximate constancy of VJ in that702

range (shown in figure 7).703

Figure 16b shows that our formula 3.6 for the TNTI’s mean propagation704

velocity vn with Df given by Df2(ω
2
th/ω

2
ref ), the time-averaged (from t/Tref = 30705

to 98) value of Df2(ω
2
th/ω

2
ref ), captures the enstrophy threshold dependence of706

vn very well over the wide range of thresholds 10−6 6 ω2
th/ω

2
ref 6 10−3 which is707

within the TNTI throughout the time range considered.708

In the following section we explore the inconsistencies of the simple fractal709

model for vn presented in section 2 and investigate how they might be overcome.710

5.6. A generalised Corrsin length for the TNTI711

Our simple fractal model’s formula 3.6 predicts both the time dependence of the712

TNTI’s mean propagation velocity vn and its enstrophy threshold dependence713

quite well. However, our fractal model did not foresee the complex inner structure714

of the TNTI where different iso-enstrophy surfaces within the TNTI have different715

fractal dimensions.716

Our model is based on (i) d
dt
VJ = 2aLxLz

d
dt
δ (needed to go from eq. 3.1 to eq.717

3.2) which our simulations rather support (see figure 13); (ii) S = LxLz(ηI/δ)
2−Df718

where ηI = ν/vn is the Corrsin length-scale for the viscous superlayer’s thickness;719
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(a) (b)

Figure 16: (a) Average interface propagation velocity vn normalised by uη
versus normalised enstrophy threshold for different times t/Tref . (b) vn divided

by (Aa)1/(Df2−1)Re
(2−Df2)/(Df2−1)

G according to formula 3.6 (with A = 0.05777
and a = 1.6574) normalized by uη versus normalised enstrophy threshold for

different times t/Tref .

and (iii) a well-defined fractal dimension Df independent of r over a significant720

range of r values bounded from below by the smallest length-scale on the TNTI.721

In the event, our DNS data have returned well-defined fractal dimensions Df2722

independent of r in a range bounded from below by λ but not by the smallest723

length-scale on the TNTI, which appears to be η as the maximum of r2N(r) is724

typically reached at r close to η. The number N of boxes needed to cover iso-725

enstrophy surfaces continues to increase faster than r−2 as r decreases from λ to η,726

implying that these scales between λ and η contribute to the surface area, but not727

with a well-defined r-independent fractal dimension. Furthermore, in the range728

where a r-independent fractal dimension may be claimed, i.e. λ 6 r 6 δ, this729

fractal dimension Df2 is a decreasing function of enstrophy threshold ω2
th/ω

2
ref730

appearing to tend towards close to 2 as ω2
th/ω

2
ref tends to 0.731

In figure 17 we plot S(η) = LxLz(η/δ)
2−Df2 , S(λ) = LxLz(λ/δ)

2−Df2 and732

S(ηI) = LxLz(ηI/δ)
2−Df2 , all normalised by SR ≡ maxr[r

2N(r)]. These three733

quantities are plotted versus time for different enstrophy thresholds within the734

TNTI range of thresholds, i.e. ω2
th/ω

2
ref within [10−6, 10−3]. The fractal dimension735

Df2 is our only possible choice of fractal dimension for the calculations of S(η),736

S(λ) and S(ηI) if we want to be consistent with our model’s requirement that737

the fractal dimension should be well-defined, i.e. r-independent over a significant738

r-range.739

Firstly, figure 17 shows that S(η)/SR, S(λ)/SR and S(ηI)/SR are about con-740

stant in time for all TNTI enstrophy thresholds, which is not surprising given741

the approximate time constancies of Df2 and of SR and given that η, λ and742

ηI have the all same time-dependence as δ. Secondly, figure 17 shows that only743

S(η)/SR collapses for all enstrophy thresholds. This is not a trivial result because744

S(η) is calculated in terms of a fractal dimension Df2 which is not well-defined745

at scale η. The worse collapse is returned by S(λ)/SR; and S(ηI)/SR tends746

towards S(η)/SR with decreasing ω2
th/ω

2
ref which makes some sense because, in747

this limit, Df2 decreases towards values close to 2 and ηI/η therefore approaches748

a value of order 1 extremely weakly dependent on ω2
th/ω

2
ref (see section 2).749

However, S(ηI)/SR takes values between 1/5 and 1/4 which is different from 1750

and therefore contradicts eq. 3.5 which is a premise of our model. In fact, there is a751

dimensionless coefficient b in eq. 3.3, i.e. S(r) = bLxLz(r/δ)
2−Df . This coefficient b752

is independent of enstrophy threshold because it is set by S(r = δ) = bLxLz. The753
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Figure 17: Plots of S(η) = LxLz(η/δ)
2−Df2 , S(λ) = LxLz(λ/δ)

2−Df2 and
S(ηI) = LxLz(ηI/δ)

2−Df2 (where ηI = ν/vn with vn values calculated in
section 5.5), all normalised by SR ≡ maxr[r2N(r)], versus time t/Tref for

various enstrophy thresholds within the TNTI.

only way to retrieve 3.5 is by writing S = bLxLz(cηI/δ)
2−Df with bc2−Df = 1754

which requires that the dimensionless coefficient c is a function of ω2
th/ω

2
ref .755

Without the arbitrary condition bc2−Df = 1, the formula 3.6 predicted by our756

simple fractal model should be replaced by757

vn
UJ

=

(
cDf−2

b

)1/(Df−1)

(Aa)
1/(Df−1) HJ

δ
Re
−(Df−2)/(Df−1)
G . (5.3)758

The quantity cDf−2

b
is in fact the ratio S(ηI)/SR (with S(ηI) given by759

LxLz(ηI/δ)
2−Df2) that we plot in figure 17 and from our data it transpires that760

(S(ηI)/SR)1/(Df2−1) is a significantly decreasing function of ω2
th/ω

2
ref (see figure761

18). Without setting cDf−2

b
= 1 our model does not return the right enstrophy762

threshold dependence of vn, and cDf−2

b
= 1 does not agree with our DNS data763

which show that S(ηI)/SR (with S(ηI) given by LxLz(ηI/δ)
2−Df2) takes values764

between 1/5 and 1/4. We therefore need to explore how our model could be765

modified to be more realistic, and we do this by generalising the Corrsin length.766

The Corrsin length may be considered appropriate only for the viscous super-767

layer at the very lowest enstrophy thresholds where the generation of vorticity768

is viscosity-dominated and, consistently, S(ηI)/SR and S(η)/SR appear to take769

similar values. To generalise this property to higher enstrophy thresholds, we770
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Figure 18: (S(ηI)/SR)1/(Df2−1) as a function of ω2
th/ω

2
ref at different times

t/Tref .

introduce a generalised Corrsin length771

ηT = νT/vn (5.4)772

in terms of a local turbulent viscosity νT (local to every iso-enstrophy surface773

within the TNTI) such that774

S = bLxLz(c ηT/δ)
2−Df2 (5.5)775

where b and c = c(ReG, ω
2
th/ω

2
ref ) are dimensionless coefficients independent of776

time.777

The simple physical idea behind eq. 5.4 is that the process of enstrophy778

production is increasingly dominated by vortex stretching rather than viscosity as779

the enstrophy threshold increases from the outer, viscous superlayer, side of the780

TNTI to its inner, turbulent, side. Studies over the past two decades have indeed781

shown that the TNTI has an inner structure which includes a viscous superlayer782

and a sort of buffer layer or turbulent sublayer where vorticity production783

dominates (da Silva et al. 2014; Taveira & da Silva 2014; Nagata et al. 2018).784

Hence, the turbulence viscosity νT = νT (ω2
th/ω

2
ref ) is expected to increase and785

become independent of the fluid’s kinematic viscosity ν with increasing ω2
th/ω

2
ref786

within the TNTI.787

We now ask whether equations 5.4, 5.5 and 3.2, which represent an attempt to788

improve the model for vn in section 2, are consistent with the requirement that789

νT must increase with ω2
th/ω

2
ref . The three equations just mentioned imply790

νT =
2aδ

c

dδ

dt

(
S

bLxLz

)−(Df2−1)/(Df2−2)

(5.6)791

where the dimensionless constant a is the one in Svn = 2aLxLzdδ/dt. It can792

be seen that νT depends on ω2
th/ω

2
ref through S and Df2 (and also c) but does793

not depend on time in agreement with our observations in figures 3a, 14b and794

11. As S/LxLz increases whereas (Df2 − 1)/(Df2 − 2) decreases with increasing795

ω2
th/ω

2
ref , it is not trivial to predict how

(
S

LxLz

)−(Df2−1)/(Df2−2)
behaves with796

varying ω2
th/ω

2
ref . We therefore use time-averaged values of S and Df2 obtained797

in the previous section for different enstrophy thresholds and plot in figure 19798

the turbulent viscosity νT given by eq. 5.6 with c set to a constant independent799

of ω2
th/ω

2
ref and δ dδ

dt
= 1

2
dδ2

dt
given by the DNS. The result shows that νT with800
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Figure 19: The turbulent viscosity νT given by eq. 5.6 with a/c = 1 and b = 1 as
a function of normalised enstrophy threshold.

c = Const is a monotonically increasing function of ω2
th/ω

2
ref as required for our801

improved model to be physically viable. This means that ηT = νT/vn is also a802

monotonically increasing function of ω2
th/ω

2
ref because eq 3.2 implies that vn is803

a decreasing function of ω2
th/ω

2
ref . However, the result in figure 19 also suggests804

that νT and ηT tend to 0 as ω2
th/ω

2
ref decreases towards 0 whereas νT should be805

tending towards the kinematic viscosity ν in that limit. In the following paragraph806

we demonstrate how the model’s dimensionless coefficient c(ReG, ω
2
th/ω

2
ref ) can807

ensure that νT tends to ν as ω2
th/ω

2
ref → 0, i.e. as we move towards the outer808

edge of the TNTI.809

We model c as being a constant independent of both ReG and ω2
th/ω

2
ref for810

most enstrophy thresholds within the TNTI except the smallest ones where we811

approximate it as c(ReG, ω
2
th/ω

2
ref ) ≈ ReGc̃(ω

2
th/ω

2
ref ) with c̃ being a function of812

ω2
th/ω

2
ref but not of ReG. Given that δ dδ

dt
= A

2
UJHJ (from eq. 2.20), we can write813

2a δ
c
dδ
dt
≈ Aaν

c̃
as ω2

th/ω
2
ref → 0, i.e.814

νT ∼ Aa
ν

c̃

(
S

bLxLz

)−(Df2−1)/(Df2−2)

. (5.7)815

in that limit. For νT to tend to ν as ω2
th/ω

2
ref → 0, c̃ must tend to 0 at the same816

rate as
(

S
bLxLz

)−(Df2−1)/(Df2−2)
, i.e.817

ln c̃ ≈ −Df2 − 1

Df2 − 2
ln(

S

bLxLz
) + const (5.8)818

as ω2
th/ω

2
ref → 0. It is not the goal of this paper’s final part to determine the819

functions νT (ReG, ω
2
th/ω

2
ref ) and c(ReG, ω

2
th/ω

2
ref ) in the improved model for vn820

based on eqs. 5.4, 5.5 and 3.2; the goal here is simply to demonstrate on the821

basis of our DNS and simple asymptotic arguments that such a model can be822

physically viable. The example of a choice of c(ReG, ω
2
th/ω

2
ref ) that we made at823

the start of this paragraph ensures that νT remains a monotonically increasing824

function of ω2
th/ω

2
ref while at the same time tending to ν as ω2

th/ω
2
ref tends to 0.825

We now work out the consequences of this choice for ηT and vn.826
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The formulae for vn and ηT which can be readily derived from our improved827

model are828

vn/uη ∼
(
c(Df2−2)

b

) 1
Df2−1

(Aa)
1

Df2−1 Re
−

Df2−2

Df2−1+
1
4

G (νT/ν)
Df2−2

Df2−1 (5.9)829

and830

ηT/η ∼
(
c(Df2−2)

b

) −1
Df2−1

(Aa)
− 1

Df2−1Re

Df2−2

Df2−1−
1
4

G (νT/ν)
−

Df2−2

Df2−1 (νT/ν) (5.10)831

Note that the original model of section 2 leads to vn/uη ∼ (Aa)
1

Df2−1Re
−

Df−2

Df−1+
1
4

G832

and ηI/η ∼ (Aa)
− 1

Df2−1Re

Df−2

Df−1−
1
4

G without the extra powers of cDf2−2/b and νT/ν833

in eqs. 5.9 and 5.10.834

Without these extra powers, the original model predicts the dependence of vn on835

ω2
th/ω

2
ref very well. In our improved model, (νT/ν)

Df2−2

Df2−1 is an increasing function836

of enstrophy threshold because νT/ν is increasing and because the exponent Df2−2
Df2−1

837

is also increasing given that Df2 is an increasing function of ω2
th/ω

2
ref as observed838

in our DNS. Our improved model is therefore capable of maintaining the original839

model’s good prediction for vn if the increasing dependence of (νT/ν)
Df2−2

Df2−1840

on ω2
th/ω

2
ref compensates the decreasing dependence of (cDf2−2/b)1/(Df2−1) on841

ω2
th/ω

2
ref . Indeed, cDf2−2/b is not equal to 1 and (cDf2−2/b)1/(Df2−1) is a decreasing842

function of enstrophy threshold, in agreement with our DNS observation in the843

bottom plot of figure 17. The entire point of our improved model has been to show844

that by introducing the generalised Corrsin length and the turbulent viscosity νT845

it is possible to correct our original model’s wrong assumption cDf2−2/b = 1846

without compromising its correct predictions.847

We now show that the choice of c that we made for νT to tend to ν as ω2
th/ω

2
ref →848

0 also ensures that the generalised Corrsin length ηT tends to a finite value in849

that limit. As we move within the TNTI from high to low iso-enstrophy levels,850

i.e. as we take the limit of ω2
th/ω

2
ref decreasing towards very small values close to851

0 and we approach the outer edge of the viscous superlayer, Df2 tends towards852

values close to 2 and νT tends to ν assuming c(ReG, ω
2
th/ω

2
ref ) ≈ ReGc̃(ω2

th/ω
2
ref )853

in that limit. We are therefore left with854

vn/uη ∼ c̃
Df2−2

Df2−1Re
1
4

G (5.11)855

and856

ηT/η ∼ c̃
−

Df2−2

Df2−1Re
− 1

4

G (5.12)857

as we approach the outer edge of the viscous superlayer (we have omitted the858

unimportant factor Aa/b). Finally, eq. 5.8 implies c̃
Df2−2

Df2−1 ∼ LxLy/S, and therefore859

our generalised model’s predictions for the viscous superlayer where Df2 is very860

close to 2 and ω2
th/ω

2
ref is extremely small are861

vn/uη ∼
LxLz
Sν

Re
1
4

G (5.13)862
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and863

ηT/η ∼
Sν
LxLz

Re
− 1

4

G (5.14)864

where Sν is the finite surface area of the effectively smooth viscous superlayer of865

the TNTI. Our generalised model with c(ReG, ω
2
th/ω

2
ref ) ≈ ReGc̃(ω

2
th/ω

2
ref ) and866

eq. 5.8 at the very smallest enstrophy levels and c = 1 above those enstrophy867

levels implies that ηT is a monotonically increasing function of ω2
th/ω

2
ref with a868

finite value different from η by a factor Re
−1/4
G at the very smallest enstrophy869

thresholds. The exponent 1/4 being small, this prediction is not easy to check870

as it requires numerical oscillation-free calculations at low enstrophy thresholds871

for many highly resolved DNS of temporally developing turbulent jets over a872

wide range of Reynolds numbers ReG (see Appendix B for some details about873

higher Reynolds number simulations and the importance of spatial resolution).874

This is at, and perhaps even beyond, the very limit of the most powerful current875

computational capabilities and therefore beyond the present paper’s scope. Such876

a computational check would also require a computable definition or surrogate for877

ηT which we make a first attempt to give in the following couple of paragraphs.878

Before doing so, however, we point out that Silva et al. (2018) argued that the879

viscous superlayer thickness scales with the Kolmogorov length if Reλ is larger880

than about 200 and that the TNTI layer’s characteristic sizes may have different881

scalings at smaller values of Reλ depending on presence or absence of mean882

shear (see da Silva & Taveira (2010) and references therein). It must be stressed883

that the definition of the viscous superpayer used by Silva et al. (2018) does884

not necessarily include some low iso-enstrophy surfaces with fractal dimensions885

clearly larger than 2 (see discussion around figure 11 in subsection 5.4) and, more886

importantly, is not local in enstrophy threshold (i.e. it does not depend on the887

local position within the TNTI) and is therefore different from ηT which is local888

in enstrophy threshold. The scaling (5.14) does not necessarily contradict the889

scalings in Silva et al. (2018) as they concern different quantities.890

We close this section with an interpretation of the generalised Corrsin length891

ηT . As ηT is local in terms of iso-enstrophy levels within the TNTI and as it892

expresses some kind of thickness of iso-enstrophy surfaces, it appears natural893

to compare it with some average enstrophy length-scale on the TNTI. To this894

end, we use enstrophy profiles conditioned on the interface location similar to895

Bisset et al. (2002). We define a local coordinate system with local coordinate896

yI chosen along the local normal unit n = − ∇ω2

|∇ω2| which is pointing towards the897

non-turbulent region. The origin yI = 0 of this local coordinate system is placed898

at a given location within the TNTI, for example on the isosurface defined by899

ω2
th/ω

2
ref = 10−6, located at the very edge of the TNTI neighbouring the non-900

turbulent region. This way, positive values of yI correspond to the very edge of901

the viscous superlayer and the non-turbulent region whereas negative values of902

yI are within the TNTI and the turbulent region. Given such local coordinate903

systems on the TNTI, we calculate averages of any quantity φ at a given yI over904

all locations on the TNTI where the local yI axis does not cross the TNTI more905

than once in the range yI = [−27η,+27η]. We use the notation φI to denote these906

average quantities, averaged conditionally on the specified isosurface location.907

Figure 20 shows the vorticity magnitude and the enstrophy profile, averaged908

conditionally on the distance from the enstrophy isosurface ω2
th/ω

2
ref = 10−6: the909

profiles are normalized by the average values of the respective quantities at the910
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Figure 20: Vorticity magnitude and enstrophy values averaged conditionally on
the distance from the iso-enstrophy surface defined by ω2

th/ω
2
ref = 10−6 for the

simulation PJ1.
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Figure 21: (a) Plot of ηω/η versus ω2
I/ω

2
ref for t/Tref = 50, PJ1 simulation.

This plot is typical of all times t/Tref between 30 and 100. (b) Profile of ηω
along yI/η, with yI = 0 at ω2

th/ω
2
ref = 10−6.

centreplane. The drastic change of both vorticity and enstrophy values in a very911

short distance is visible as shown previously in studies using similar methods e.g.912

Nagata et al. (2018); Silva et al. (2018); Watanabe et al. (2019).913

We define the local length ηω ≡
(
dω2

I

dyI

1
ω2

I

)−1
. In figure 21a we plot ηω/η versus914

ω2
I/ω

2
ref . In agreement with ηT , ηω is an increasing function of enstrophy, ω2

I/ω
2
ref915

in this case: iso-enstrophy surfaces get further away from each other on average916

as ω2
I/ω

2
ref increases within the TNTI. At the very smallest enstrophy thresholds,917

ηω appears to tend to a finite value that is significantly smaller than η, which is918

also in agreement with ηT at high enough ReG (see eq. 5.14)919

We also plot ηω/η versus yI/η in figure 21b. In this figure yI = 0 corresponds920

to the iso-enstrophy surface ω2
th/ω

2
ref = 10−6. We see that the profile of ηω along921

yI is exponentially decreasing with increasing yI . The linear region ends near922

yI/η ≈ −2.5. This is due to some points where the normal enstrophy profiles do923

not decrease monotonically to zero when going towards the non-turbulent region,924

even though the local enstrophy values always remain lower than the threshold925

value.926
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6. Conclusion927

To determine the mean flow profile evolution, we have applied to the temporally928

developing turbulent planar jet the approach typically applied to spatially de-929

veloping free turbulent shear flows. This approach is based on self-similarity and930

on mass, momentum and turbulent kinetic energy balance equations (Townsend931

1976; George 1989; Cafiero & Vassilicos 2019). The turbulent kinetic energy932

equation involves the turbulence dissipation rate and one needs to specify the933

turbulence dissipation rate’s scalings in order to close the problem. The mecha-934

nism for turbulence dissipation being the turbulence cascade, different types of935

turbulence cascade (e.g. equilibrium, non-equilibrium, balanced non-equilibrium,936

see Dairay et al. (2015); Vassilicos (2015); Goto & Vassilicos (2016); Cafiero937

& Vassilicos (2019)) in the presence of different types of large-scale coherent938

structures, can lead to different turbulence dissipation scalings (Goto & Vassilicos939

2016; Ortiz-Tarin et al. 2021). In turn, different dissipation scalings lead to940

different self-similar mean flow profile evolutions as already found in various941

spatially developing turbulent flows (e.g. Dairay et al. (2015); Vassilicos (2015);942

Cafiero & Vassilicos (2019); Ortiz-Tarin et al. (2021)) and to different TNTI943

mean propagation speeds as demonstrated by Cafiero & Vassilicos (2020) for the944

spatially developing turbulent planar jet.945

The temporally developing self-similar turbulent planar jet is exceptional be-946

cause the scalings of its mean flow profile evolution do not depend on the scalings947

of the turbulence dissipation rate. Whatever the exponent m in eq. 2.18, the948

scalings of the centreline mean flow velocity u0 and jet width δ are given by949

eqs. 2.19 and 2.20. The reason why the temporally developing self-similar jet950

is fundamentally different from its spatially developing counterpart is that it951

conserves volume flux and has identically zero cross-stream mean flow velocity952

whereas spatially developing turbulent planar jets do not conserve volume flux953

and do not have identically zero cross-stream mean flow velocity. As a result,954

in the case of the temporally developing self-similar turbulent planar jet, the jet955

width δ, the Kolmogorov length η and the Taylor length λ all grow as the square956

root of time, and the centreline velocity u0, the Kolmogorov velocity uη and957

the TNTI mean propagation speed all decay as the inverse square root of time958

irrespective of turbulence dissipation scaling. The Taylor length Reynolds number959

remains constant in time. All these theoretical predictions and the assumptions960

that they are based on have been verified by our DNS of a temporally evolving961

turbulent planar jet. Note that the volume flux which is conserved in our flow962

is not conserved in many other flows with a TNTI besides spatially-developing963

jets such as wakes (e.g. Watanabe et al. (2016)), boundary layers (e.g. Borrell964

& Jimenez (2016)) and mixing layers (e.g. Attili et al. (2014) and Balamurugan965

et al. (2020)). One should therefore be very careful if attempting to extend the966

applicability of this paper’s results to other turbulent flows with a TNTI.967

The prediction for the TNTI mean propagation speed has been made on the968

basis of (i) a proportionality between the turbulent jet volume and the jet width969

growth rates which has been verified by our DNS; (ii) an assumption that the970

TNTI is fractal with a well-defined fractal dimension; (iii) an assumption that971

the smallest geometrical scale on the TNTI scales with the Corrsin length which972

characterises generation of vorticity by viscous diffusion; and (iv) a particular way973

to blend assumption (ii) and (iii) together, eq. 3.5. The geometrical picture of the974

TNTI returned by our DNS has turned out to be more involved than assumptions975
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(ii), (iii) and (iv) which make no reference to the TNTI’s inner structure. Even976

so, the prediction that the TNTI mean propagation speed evolves as the inverse977

square root of time has been validated by our DNS.978

The TNTI has an inner structure over a wide range of closely spatially packed979

iso-enstrophy surfaces and it turns out that different iso-enstrophy surfaces have980

different fractal dimensions. These fractal dimensions vary from about 7/3 at981

the innermost iso-enstrophy surface on the fully turbulent side of the TNTI to982

close to 2 at the outermost iso-enstrophy surface on the non-turbulent flow side983

of the TNTI. However, the 7/3 value, which according to the theory based on984

assumptions (i), (ii) and (iii), corresponds to a TNTI mean propagation speed985

that scales with the Kolmogorov velocity uη, is not well-defined in the sense that986

it is a fit through a range of scales where the fractal dimension is not scale-987

independent as it should be. Lower fractal dimension values between about 2.2988

and under 2.1 are found for iso-enstrophy surfaces with lower enstrophy values,989

i.e. towards the TNTI’s outer side. These lower fractal dimensions are well-defined990

in a range of scales bounded by λ from below and δ from above. However, the991

smallest geometrical scales on these iso-enstrophy surfaces are close to η and the992

scales between λ and η contribute significantly to the surface areas of the iso-993

enstrophy surfaces even though these scales are not characterised by a well-defined994

fractal dimension. The formula for the TNTI mean propagation speed vn obtained995

from assumptions (i), (ii) and (iii) captures its time dependence because the time996

dependence is the same for all iso-enstrophy surfaces. Perhaps remarkably, it also997

captures the iso-enstrophy dependence of vn via the iso-enstrophy dependence of998

the fractal dimension. However, the DNS invalidates eq. 3.5 on which the formula999

for vn is partly based and supports a form such as eq. 5.5 instead.1000

Having found that different iso-enstrophy surfaces within the TNTI have differ-1001

ent sufficiently well-defined fractal dimensions over a range of scales bounded from1002

below by λ and that length scales below λ on these surfaces do also contribute1003

significantly to their surface area, it is not possible to sweepingly argue that the1004

Corrsin length ηI is the smallest length-scale on the fractal/fractal-like/multiscale1005

TNTI. Aiming to keep the model’s correct predictions while at the same time1006

abandoning wrong premise (iv), we nevertheless keep the main structure of our1007

model by keeping assumptions (i) and (ii) and modifying (iii) and (iv). For this, we1008

introduce a generalised Corrsin length defined on the basis of an iso-enstrophy1009

surface-dependent turbulent viscosity νT which tends to the fluid’s kinematic1010

viscosity ν as the iso-enstrophy level tends to near-vanishing values at the viscous1011

superlayer but is independent of ν at higher iso-enstrophy levels. We demonstrate1012

the physical viability of such a model but leave for future investigation the1013

detailed relation between νT and the enstrophy production processes which vary1014

from being viscosity dominated at the outer edge of the TNTI (viscous superlayer)1015

to being controlled by vortex stretching further in. We do, however, show with1016

our DNS that the generalised Corrsin length depends on iso-enstrophy levels1017

similarly to the length-scale ηω defined by the local enstrophy gradients within1018

the TNTI: in particular, ηω is smaller than η at the outer edge of the TNTI,1019

larger than η at the inner edge of the TNTI, and monotonically increasing in1020

between. Even if incomplete at this stage, our revised model predicts that the1021

mean propagation speed at the outer edge of the viscous superlayer is proportional1022

to the Kolmogorov velocity multiplied by the 1/4th power of the global Reynolds1023

number. We stress that this prediction is specific to temporally developing self-1024

similar turbulent planar jets which are very idiosyncratic flows and that it should1025
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not necessarily be extended to spatially developing free turbulent shear flows.1026

Current computational capabilities at our disposal are insufficient for the wide1027

range of global Reynolds number required to verify this prediction.1028
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Appendix A.1040

We are interested in fine details of TNTI layer which is located at the boundary1041

between the turbulent and non-turbulent regions of the flow. At the outer edge1042

of the TNTI, the enstrophy value decays quickly to zero. We investigate how1043

quantities such as Df , vn vary with enstrophy threshold value. A wide range of1044

enstrophy threshold values are considered, all located in the plateaus shown in1045

figure 7, and the lowest we consider here reach ω2
th/ω

2
ref = 10−6. In order to obtain1046

relevant TNTI statistics at such very low enstrophy levels, the DNS solution1047

must be smooth and free of oscillations. When using a classical 2/3 truncation1048

de-aliasing method for the simulations with the pseudo-spectral code, we observe1049

numerical oscillations at these low enstrophy values which makes it impossible to1050

investigate this very low enstrophy part of the TNTI layer. The limiting effect1051

of these oscillations has been mentioned in the study of Krug et al. (2017). The1052

solution is to use a modified de-aliasing method as explained in section 4. A1053

similar procedure is applied in Krug et al. (2017) with their choice of a pth-order1054

Fourier exponential filter for the de-aliasing. Our method, which has no effect on1055

the modes unaffected by the aliasing, is able to suppress the oscillations within1056

the useful range of enstrophy. As we are dealing with a very sharp interface and1057

need to reduce our enstrophy thresholds to extremely low values, the numerical1058

oscillations naturally become observable at some point, particularly without a1059

special treatment being employed. This is due to the fact that the spectral method1060

does not underestimate the derivatives and does not smooth out sharp gradients1061

as is the case with finite difference methods for example.1062

In order to demonstrate how the classical sharp de-aliasing leads to some1063

oscillations and the effectiveness of our modified de-aliasing method, we compare1064

two simulations starting from identical initial conditions, solved by the same1065

pseudo-spectral solver. The first simulation was performed with the classical1066

sharp de-aliasing method which truncates the solution at all wavenumbers with1067

modulus larger than 2/3kmax = N/3, and the second simulation uses our modified1068

de-aliasing method. As can be observed in figure 1b, the minimum value of the1069

mean Kolmogov scale η on the centreline appears just after the transition, and we1070

therefore compare the solutions of the two simulations at t/Tref = 26 where the1071

grid resolution is most problematic. We also consider the simulation PJ5 which1072
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(a) (b)

(c) (d)

Figure 22: Enstrophy fields in a normal stream-wise plane for two identical
simulations PJ5 (a,c) with modified de-aliasing (used in the present study)
(b,d) classical 2/3 truncation. (a,b) at t/Tref = 26 and (c,d) at t/Tref = 50.

Same colors are used for ω2/ω2
ref iso-contours as in figure 8, where magenta and

cyan correspond to ω2/ω2
ref = 10−3 and 10−6 respectively.

has the highest Reλ peak. The two simulations are initialised with the same initial1073

conditions.1074

Figures 22a and 22b show the enstrophy in a normal streamwise plane for the1075

two simulations at t/Tref = 26. Figure 22a corresponds to the simulation with the1076

modified de-aliasing and figure 22b is the case where the classical 2/3 truncation1077

method is used. Oscillations are clearly visible in the case of classical de-aliasing1078

even for normalized enstrophy levels higher than 10−3 whereas the solution is1079

smooth for all investigated enstrophy levels with our modified de-aliasing method.1080

It should be noted that the oscillations are visible at fairly high enstrophy1081

thresholds at this instant and that these oscillations gradually reduce with time,1082

but do not dissapear at the targeted enstrophy thresholds ω2
th/ω

2
ref > 10−6 for1083

t/Tref > 30 with the classical 2/3 truncation method. In figure 22c and 22d,1084

enstrophy contours are given for t/Tref > 50, which is in the time range we1085

investigate the TNTI characteristics. Although some enstrophy iso-contours ap-1086

pear to be smooth, local regions where the oscillations are present may introduce1087

significant problems. For example the computation of Df would be affected by1088

these oscillations, as the iso-surface become more volume filling in the presence1089

of these numerical artifacts.1090

To quantify the energy content of these oscillations, the energy and dissipation1091

spectra on the centreplane are compared for the two simulations in figure 23. The1092

spectra look identical for both cases, apart from the small peak at the very end1093

of the resolved wave numbers which is present for the classical 2/3 truncation1094

method. This shows how difficult it is to assess the smoothness of the irrotational1095

region and the external part of the TNTI from energy and dissipation spectra.1096

In figure 24, the jet volume as a function of the enstrophy threshold (similar to1097

the figure 7) is plotted at t/Tref = 26 for the two simulations with classical1098
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(a) (b)

Figure 23: (a) Energy and (b) dissipation spectra at the centreplane of two
identical simulations in terms of flow parameters and initial conditions, one
with modified de-aliasing and the other one with classical 2/3 truncation

method. Results are from the simulation PJ5 at t/Tref = 26.

Figure 24: The jet volume defined as ω2 > ω2
th for the two simulations PJ5 at

t/Tref = 26 with modified de-aliasing (blue) and classical 2/3 truncation
(orange).

and modified de-aliasing methods. A clear extension of the plateau towards1099

lower values of ω2
th/ω

2
ref is seen when the modified de-aliasing method is used.1100

Meanwhile the high threshold regions remain unaffected by the modification,1101

showing that the de-aliasing method works as planned. It suppresses the weak1102

oscillations at the outer regions of the TNTI but the evolution of the turbulent1103

region is similar in both cases.1104

Appendix B.1105

In section 5.6, the relation for ηT/η, eq. 5.10 has been simplified for the iso-1106

enstrophy surfaces at the very outer edge of VSL by using Df2 ≈ 2 due to the1107

fact that Df2 → 2 when ω2
th/ω

2
ref → 0. This simplification leads to eq. 5.14 where1108

a scaling due to the global Reynolds number ReG is present with the power of1109

−1/4.1110

In an attempt to obtain a data set spanning a range of Reynolds numbers1111

to investigate this scaling, additional simulations have been conducted having1112
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(a) (b)

Figure 25: (a) Reλ and (b) resolution dy/η at the centreplane of the planar jet
for ReG = 3200 (PJ1 simulation), ReG = 6400 and ReG = 9600.

10−6 10−5 10−4 10−3

10-7

101

ω
2
/ω

2 re
f

Figure 26: Enstrophy contour field at a cut-section of the simulation PJ-Re6400
at t/Tref = 50 with iso-enstrophy contours from ω2

th/ω
2
ref = 10−6 to 10−3 are

being shown at the TNTI.

ReG = 6400 and ReG = 9600 which will be referred as PJ-Re6400 and PJ-1113

Re9600 respectively. The initial conditions and the solver properties remain the1114

same as described in section 4. The computational grid also remains the same as1115

the PJ1-5 simulations, due to the computational constraints.1116

With the increase of the ReG, the Reynolds number based on Taylor length1117

scale Reλ at the centreplane of the jet becomes Reλ ≈ 70 and Reλ ≈ 80 for the1118

simulations PJ-Re6400 and PJ-Re9600, compared to Reλ ≈ 50 for PJ1 simulation1119

(labelled as ReG = 3200 in figure), which can be seen in figure 25a. Figure 25b1120

shows the time evolution of the spatial resolution normalized by the Kolmogorov1121

scale at the centreplane after the transition to fully turbulent regime.1122

Following the section A, we focus on time t/Tref = 50 as this time being in the1123

middle of the investigated time range in this study to analyze the state of the1124

data. Figure 26 shows the enstrophy contours at the cut-section of the PJ-Re64001125

simulation along with the enstrophy iso-surfaces marked at the TNTI.1126

It is observed that numerical oscillations are present in the enstrophy iso-1127

surfaces due to the reduction of the resolution of the simulations. The oscillations1128

are present even at the iso-surfaces of enstrophy thresholds up to ω2
th/ω

2
ref = 10−4.1129

Under these conditions the application of box-counting algorithm is not possible1130

for ω2
th/ω

2
ref . 10−3, while the eq. 5.14 is obtained for the very outer enstrophy1131

iso-surfaces which have Df2 ≈ 2.1132
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