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Objectives of the course

The objectives of the course are to give you:

the basis to understand a code (home-made, Fluent, ...)

select the best possible algorithm when choice are required
be aware of the limitations

the basis to create your own specific code (simulation or
post-processing)

the possibility to talk with experience people developing
algorithms

You will not know all possible methods but only the most used (not
necessary the best ones for your problem)

you will need to learn by yourself (we can help you)

do not (always) trust the standard way of thinking

Please ask questions when needed
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Outline (1/3)

Introduction to numerical methods

What is a model and why do we need one ?
Concept of Consistency, Stability, Convergence and Accuracy

Interpolation methods

Polynomial interpolation
Spline interpolation

Discretisation of Partial Derivative Equations

Spectral methods
Finite differences
Finite volumes
Finite elements (very brief introduction)
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Outline (2/3)

Solving of Linear System

Some definitions on matrix
Introduction to linear Systems
Well posed problems
Conditionning
Direct methods
Iterative methods
Multi-grid methods
Convergence

Time integration

Two steps Methods
Predictor-Corrector Methods
Runge-Kutta Methods

Consistency, stability and convergence

Consistency, order of accuracy
Stability analysis (with van Neumann methods)
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Outline (3/3)

Solving the Navier-Stokes equations

Incompressible flows (SIMPLE, SIMPLER, PISO, Fractional Step)
Compressible flows (Preserving schemes, Lax Wendrov)

Parallelisation and numerical algorithms

Why using parallel algorithms ?
Parallelisation of the system
Parallelisation of the problem (domain decomposition)

Open questions ...
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Introduction to numerical methods
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What is a model ?

The principle of the modeling is to replace a complex system by an
object or an operator which represents the aspects or the behavior of
the original system. Several solutions are possible:

Series of experiments to analyze the parameters of the system
and to deduce the characteristic of the model.

experiments may be too expensive (flying tests, expensive
experimental tools,...)
experiments may be too dangerous (nuclear test, spatial context)
size of the problem too large or too small (physics of particles,
astrophysics, meteorology ...)

Work out a mathematical model which represents the physics of
the original problem (system of Partial Derivative Equations)
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From the modeling to the simulation

The different steps to model a complex system are the following:

Look for a mathematical model which represents the physics of
the problem

Define a computational domain and define a mesh for this
domain.

Discretisation of the equations of the physics.

Solving the discrete equations (usually a system of equations).

Transcription of the program.

Numerical simulation.

Check and validation of the results.
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Stability

One can distinguish between three kinds of stability:

Stability of the physical problem.

Stability of the mathematical problem.

Stability of the numerical method to solve a problem.
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Stability of physical problem

A problem is chaotic if a small variation of the initial data leads
to a large variation of the results

The stability is linked to the physics of the problem and is
independent of the numerical methods used to solve the problem.

Example: Turbulent flows (sensibility to the initial conditions),
Earthquakes
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Stability of mathematical problem

A mathematical problem is ill-conditioned if a small variation of
the data leads to a large variation of the results

This notion is linked to the mathematical problem and is
independent of the numerical method used to solve the problem.

One must check that the mathematical problem is as well
conditioned as possible before to try to solve it.

It may be necessary to modify the mathematical model in order
to avoid conditioning problems
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Stability of numerical methods

A numerical method is unstable if it can propagate and amplify
round-off numerical errors.

A mathematical problem can be well-conditioned with a
numerical method chosen to solve the problem which is unstable.

If the mathematical problem is ill-conditioned, no numerical
method will be able to solve accurately the problem.
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Consistency, Stability, Convergence and Accuracy

The resolution of partial derivative equation using discretized
equations should have certain properties. The three major properties
are: consistency, stability and convergence. These three properties
allow to link the exact solution of the continuous equations to the
exact solution of the discretized equations and to the numerical
solution obtained by the numerical method.
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Accuracy

One must keep in mind that CFD results are usually contaminated by
many different errors:

Modeling errors, which are defined as the difference between the
actual flow and the exact solution of the mathematical model

Discretization errors, defined as the difference between the exact
solution of the conservative equations and the exact solution of
the algebraic system of equation obtained by discretizing these
equations

Iteration errors, defined as the difference between the iterative
and exact solutions of the algebraic equations systems (for
iterative methods only)

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NS

Consistency

The consistency is the property which ensure that the exact solution
of the discretized equations tends to the exact solution of the
continuous equations when the time and space discretisations tend to
zero ∆t → 0,∆x → 0.

The difference between the discretized equation and the exact
one is called the truncation error.

Even if the approximations are consistent, it does not necessarily
mean that the solution of the differential equations will become
the exact solution in the limit of small step size (need to be
stable).
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Stability (of the numerical method)

The stability is the property which ensure that the difference between
the numerical solution and the exact solution remains bounded.

A numerical solution method is said to be stable if it does not
magnify the errors that appears in the course of numerical
solution process.

Stability can be difficult to investigate, especially when boundary
conditions and non-linearities are present.

Stability may require condition on the time step or
under-relaxation.
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Convergence

The convergence is the property which ensures that the numerical
solution tends to the (or one) exact solution of the continuous
equation when the grid spacing tends to zero.

For linear initial value problems: “given a properly posed linear
initial value problem and a finite difference approximation to it
that satisfies the consistency condition, stability is a necessary
and sufficient condition for convergence” (Lax equivalence
theorem)

For non-linear problems which are strongly influence by boundary
conditions, the stability and convergence of a method are difficult
to demonstrate (checked a-posteriori, repeating the calculation
on a series of successively refined grids).
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Conservation

Since the equations to be solved are conservation laws, the numerical
scheme should also, on both local and global basis, respect the
conservation

This means that, at steady state and in the absence of sources,
the amount of a conserved quantity leaving a closed volume is
equal to the amount entering that volume

This is an important property of the solution method, since it
imposes a constraint on the solution error

In NS equations, if the conservation of mass, momentum and
energy are insured, the error can only be improperly distributed
over the solution domain.

Non-conservative schemes can produce artificial sources and
sinks, changing the balance locally and globally

Non-conservative schemes can be consistent and stable and
therefore lead to correct solution in the limit of very fine grids
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Flow classification
&

Boundary Conditions
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Mathematical classification of flows

The mathematical properties of a model is directly connected to
the physical properties of the flow

Any flow configuration is the outcome of a balance between the
effect of convective fluxes, diffusive fluxes and the external or
internal forces

The various approximation levels can be considered as resulting
from a priori estimates of the relative influence and balance
between the contribution of these various fluxes and forces.

Diffusive fluxes (second order derivative)

⇒ tendency to smoothout the gradients.

Convective fluxes (first order derivative)

⇒ transport properties of the flow

Each of these contribution will influence the mathematical nature of
the equations (elliptic, parabolic and hyperbolic)
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Mathematical classification of flows

The distinction between hyperbolic, parabolic and elliptic types is
based on the nature of the characteristics, curves along which
information about the solution is carried. Every equation of this type
has two sets of characteristics.

In the hyperbolic case, the characteristics are real and distinct
this means that the information propagates at finite speed in two
set of directions. The two set of characteristics therefore require
two initial conditions (at the initial point of each of them).
Example of hyperbolic equations: wave equation utt − uxx = 0

In parabolic equations, the characteristics degenerate to a single
real set. Consequently, only one initial condition is normally
required

In the elliptic case, the characteristics are imaginary or complex
so there are no special directions of information propagation.
Indeed, information travels essentially equally well in all
directions.
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Classification : incompressible flows

Incompressible Navier Stokes equations

ρ
∂u

∂t
+ ρ(~v · ~∇)u = −∂p

∂x
+ µ∆u (1)

dimensionless by a reference length L, a time scale T , a velocity scale
V

VT

L

∂u

∂t
+ ρ(~v · ~∇)u = −∂p

∂x
+

1

Re
∆u (2)

where

Re =
ρVL

µ
(3)
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Classification : incompressible flows

For very small values of Reynolds number (strongly viscous dominated
flows), the convection term can be neglected with respect to the
viscous term and we obtain the Stokes equation

−V 2T

ν

∂u

∂t
+ ∆u = Re

∂p

∂x
(4)

This equation is

purely of an elliptic type in the steady state case and for a fixed
pressure gradient

parabolic in the unsteady case

The Laplace equation (or Poisson equation) can be considered as
the standard form of a elliptic equation describing an isotropic
diffusion in all space directions.
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Classification : incompressible flows

For large values of Re (and outside the boundary layer), the viscous
term as a negligible influence and the flow is dominated by
non-viscous transport terms describing the effect of the convective
fluxes. Hence, the equation reduces to the Euler equations

∂u

∂t
+ (~v · ~∇)u = −1

ρ

∂p

∂x
(5)

which in a one-dimensional space takes the form

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
(6)

which is a basic hyperbolic equation in space and time describing a
propagation phenomena.
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Classification : incompressible flows

Between this two extremes, the parabolic type of equation (in space
and time) for a time-dependent, diffusion-dominated system

V 2T

ν

∂u

∂t
= ∆u (7)

represents an intermediate situation between hyperbolic and elliptic.
This equation describes a diffusion effect propagating in all space
directions but damped in time.
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Classification : incompressible flows

time-dependent Navier-Stokes equations is essentially parabolic
in space and time

the continuity equation has an hyperbolic structure

therefore unsteady NS equations are considered as
parabolic-hyperbolic

the steady state form of the Navier-Stokes equations leads to
elliptic-hyperbolic properties
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Classification : inviscid compressible flow.

General unsteady case:

A compressible fluid can support sound and waves

It is not surprising that these equations have essentially
hyperbolic character

Most of the method to solve them are based on the idea that the
equations are hyperbolic

Example of hyperbolic equations: 1D wave equation utt − uxx = 0

Steady cases: the character depends on the speed of the flow.

Supersonic flows are hyperbolic.

Subsonic flows are essentially elliptic
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Boundary conditions

The choice of BC are important in the global behavior of a
numerical method

Several conditions may be possible for a specific problem

The accuracy and the stability of the numerical method is
directly link to the boundary conditions

The distribution of the boundary conditions must respect the
classification of the equations
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Boundary conditions

Example of a second order linear PDE : Laplace’s equation

∂2Φ

∂x2
+

∂2Φ

∂y2
= 0 (8)

The corresponding inhomogeneous PDE

∂2Φ

∂x2
+

∂2Φ

∂y2
= f (x , y) (9)

is called the Poisson equation (ex: pressure for incompressible fluid
flow)
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Dirichlet Boundary conditions

In a thermal equilibrium problem it seems reasonable to expect the
equilibrium temperature distribution of a planar object to be
completely determined by the temperature distribution imposed on its
boundary.
Ω: closed region of the plane, ∂Ω: boundary of Ω.
Mathematical problem: find a function Φ(x , y) such that

∂2Φ

∂x2
+

∂2Φ

∂y2
= 0, ∀(x , y) ∈ Ω (10)

Φ(x , y) = Φo(x , y), ∀(x , y) ∈ ∂Ω

Such a PDE problem is called a Dirichlet problem

The Dirichlet conditions (or first type conditions) are the
conditions which specify the value of the solution at the
boundary of the domain.
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Neumann Boundary conditions

Ex: A planar object is surrounded by material capable of transferring
heat at a prescribed rate f (x , y); problem: find the equilibrium
temperature inside the object.
Mathematical problem: find a function Φ(x , y) such that

∂2Φ

∂x2
+

∂2Φ

∂y2
= 0, ∀(x , y) ∈ Ω (11)

∂Φ

∂n
(x , y) = kf (x , y), ∀(x , y) ∈ ∂Ω

where ∂Φ
∂n is the derivative of Φ in the direction normal to the

boundary

Such a PDE is called a Neumann problem

The Neumann conditions specifies the values that the
derivative of a solution is to take on the boundary of the domain
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Neumann Boundary conditions

If the right hand side of the Neumann conditions is zero, the
conditions are called homogeneous Neumann boundary
conditions

In the more general case with non-zero conditions, they are called
non-homogeneous Neumann boundary conditions

For incompressible NS equations, when solving the Poisson equation
for the pressure, non-homogeneous Neumann boundary conditions can
be used.

∂p/∂n can be computed from the pressure gradient of the
momentum equation

It is not possible to use Neumann boundary conditions on the
entire boundaries of the simulation domain (can add a constant)

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NS

Robin conditions

In some situation, it may be of interest to define mixed boundary
conditions

The Dirichlet and Neumann conditions can be mixed into a single
condition at the same position

This type of conditions are called Robin boundary conditions:

aΦ(x , y) +
∂Φ

∂n
(x , y) = f (x , y) (12)

The Robin boundary condition is a general form of the insulating
boundary condition for convection-diffusion equations. the convective
and diffusive fluxes at the boundary sum to zero:

−D
∂c(0)

∂x
+ ux(0) c(0) = 0 (13)

where D is the diffusive constant, u is the convective velocity at the
boundary and c is the concentration.
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Interpolation
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Interpolation methods

The interpolation for a function which is initially evaluated on a given
grid is based on the optimization of approximate function by using all
the existing points of the original grid.
There are two options:

The full data-set is used at the same time to define a single
interpolation function valid on the whole domain

Several interpolation function are defined using only a fraction of
the local data-set

One could think that the polynomials are the best candidate to
interpolate any function. However, using a polynomial of high order
may deteriorate the quality of the approximation.
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Lagrange Polynomial

Considering n + 1 couples (xi , yi ). The interpolation problem is to find
a polynomial Πm called an interpolation polynomial such as:

Πm(xi ) = amxm
i + ... + a1xi + a0 = yi , i = 0, ..., n (14)

where the xi are called the interpolation nodes.

If n = m, one can prove that there is a unique polynomial Πm such
that Πm(xi ) = yi , for i = 0, ..., n.
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Lagrange Polynomial

Considering the n order polynomial function li such as:

li (x) =
n∏

j=0
j 6=i

x − xj

xi − xj
, i = 0, ..., n. (15)

The polynomial (li , i = 0, ..., n) are a basis of the ensemble of
polynomial of order n. By decomposing Πn on this basis, one have:

Πn(x) =
n∑

j=0

bj lj(x), (16)

and therefore:

Πn(xi ) =
n∑

j=0

bj lj(xi ), i = 0, ..., n. (17)
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Lagrange Polynomial

As lj(xi ) = δij , on can deduce that bi = yi . As a consequence, the
interpolation polynomial exists and can be written as:

Πn(x) =
n∑

i=0

yi li (x). (18)

It is possible to check that

Πn(x) =
n∑

i=0

ωn+1(x)

(x − xi )ω′n+1(x)
yi , (19)

where ωn+1 is the n + 1 order nodal polynomial defined by:

ωn+1 =
n∏

i=0

(x − xi ). (20)

The formula (18) are called interpolation formula of Lagrange and
the polynomial li (x) are the characteristic polynomial of Lagrange.
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Lagrange Polynomial

Figure: Characteristic polynomials l2(x), l3(x), l4(x) and l5(x) for n = 6
with homogeneous repartition of the points on the interval [−1, 1]
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Lagrange Polynomial

Exercise:

Construct the polynomial interpolating the data

x 1 1/2 3

y 3 -10 2

by using Lagrange Polynomials.
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Newton’s method

There is a more efficient way to define an interpolation function which
is based on an iterative method.

Given n + 1 couples (xi , yi ), i = 0, ..., n, find Πn such as

Πn(x) = Πn−1(x) + qn(x) (21)

such as

Πn(xi ) = yi with i = 0, ..., n (22)

Πn−1(xi ) = yi with i = 0, ..., n − 1 (23)

where qn(x) is polynomial of order n which depends on nodes xi and
an additional unknown coefficient
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Newton’s method

As qn(xi ) = Πn(xi )− Πn−1(xi ) = 0 for i = 0, ..., n − 1 (24)

we have
qn(x) = an(x − x0)...(x − xn−1) = an ωn(x) (25)

let’s suppose that
yi = f (xi ), i = 0, ..., n (26)

where f is a given function (not necessary with an explicit form).
As Πnf (xn) = f (xn) than we can deduced from eq. (21) that

an =
f (xn)− Πn−1f (xn)

ωn(xn)
(27)

The an coefficient is called the nth Newton’s divided difference and
is usually written as:

an = f [x0, x1, ..., xn] (28)
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Newton’s method

The equation (21) becomes

Πn(x) = Πn−1(x) + ωn(x) f [x0, x1, ..., xn]. (29)

By using the notation y0 = f (x0) and ω0 = 1 the recurrence formula
becomes

Πn(x) =
n∑

k=0

ωn(x) f [x0, x1, ..., xk ] (30)

As a consequence of the unicity of the interpolation polynomial, this
interpolation polynomial is identical to the Lagrange polynomial. This
recurrence formula is called Newton’s divided difference formula.
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Newton’s method

the nth divided differences f [x0, x1, ..., xk ] = an is the coefficient of xn

in the interpolating polynomial Πnf . By extracting this coefficient
from the definition of Πn (eq. 19) and by identifying this coefficient
with the one of the Newton’s formula (eq. 29), we obtain

f [x0, x1, ..., xn] =
n∑

i=0

f (xi )

ω′n+1(xi )
. (31)

We can obtain a recurrence formula to easily compute the divided
differences

f [xk , xk+1, ..., xn] =
f [xk+1, ..., xn]− f [xk , xk+1, ..., xn−1]

xn − xk
, n ≥ 1

(32)

J.-P. Laval IMP: Numerical Methods
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Newton’s method

The Newton’s recurrence formula can summarized in a matrix


x0

x1

x2
...
xn




f (x0)
f (x1) f (x0, x1)
f (x2) f (x1, x2) f (x0, x1, x2)

...
...

...
. . .

f (xn) f (xn−1, xn) f (xn−2, xn−1, xn) . . . f (x0, ..., xn)


The coefficients used for the Newton’s formula are in the diagonal of
the matrix.
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Newton’s method: example

Fill the following table with the Newton’s divided differences for the
interpolation of the function f = 1 + sin(3x) in the interval [0,2]



xi

0
0.2
0.4
0.8
1.2
1.6
2.0





f (xi ) f (xi , xi−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.0000
1.5646


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Interpolation Errors

If one wants to interpolate a function f (x) at n + 1 nodes in a closed
interval [a, b], what would be the best choice of the nodes ? Equally
spaced ?

Let’s take the Runge function

f (x) =
1

1 + x2
(33)

and let’s Πnf (x) being the interpolation function on n equally
distributed point in the [−5, 5] domain.

lim
n→∞

(
max

x∈[−5,5]
|Πnf (x)− f (x)|

)
= ∞ (34)
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Interpolation Errors Runge Function

Figure: Interpolation function of the Runge function (Eq. 33) using 3,7,9
and 15 equally space nodes in the domain [−5, 5].
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Interpolation Errors Runge Function

A better choice is related to the Chebyshev Polynomials
For a closed interval of [-1,1], then interpolation nodes are defined by:

xi = cos

[(
2i + 1

2n + 2

)
π

]
, 0 ≤ i ≤ n (35)

These nodes can be seen as the projection of the nodes uniformally
spaces on a semi-circle on its diameter.

Figure: Distribution of the Chebyshev nodes on a closed interval [-1,1].
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Chebyshev Polynomials

Figure: Interpolation of the Runge function using Lagrange polynomial
based on Chebyshev nodes distribution for 15 and 25 nodes.
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Interpolation error Theorem

Theorem (Interpolation error Theorem)

Let p be the polynomial of degree at most n interpolating function f
at n + 1 nodes x0, x1, x2, ..., xn on [a, b]. Let f (n+1) be continuous.
Then for each x ∈ [a, b] there are some ξ ∈ [a, b] such as:

En(x) = f (x)− Πnf (x) =
f (n+1)(ξ)

(n + 1)!
ωn+1(x), (36)

where ωn+1(x) is the nodal polynomial defined by eq. (20).
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Interpolation Errors for equally spaced nodes

Interpolation error bounding

max
x∈[a,b]

(
n∏

i=0

|x − xi |

)
, (37)

where

xi = a + h ∗ i = a +
(b − a)

n
i , i = 0, ..., n (38)

and h is the node spacing.

We can assume that x is not one of the nodes and j such as x is
between xj and xj+1.

|x − xj ||x − xj+1| ≤
h2

4
(39)
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Interpolation Errors for equally spaced nodes
We can claim

|x − xi | ≤ (j − i + 1)h for i < j (40)

|x − xi | ≤ (i − j)h for j + 1 < i (41)

then
n∏

i=0

|x − xi | ≤
h2

4

[
(j + 1)! hj

] [
(n − j)! hn−j−1

]
(42)

Moreover, it can be shown that (j + 1)! (n − j)! ≤ n! and so we get
an overall bound

n∏
i=0

|x − xi | ≤
hn+1n!

4
. (43)

The interpolation theorem gives us

|En(x)| = |f (x)− Πnf (x)| ≤ hn+1

4(n + 1)
max

ξ∈[a,b]

∣∣∣f (n+1)(ξ)
∣∣∣ , (44)

with h = (b − a)/n.
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Interpolation Errors for equally spaced nodes: example

How many equally spaced nodes are required to interpolate the
function f (x) = cos(2x) + sin(x) to within 10−10 on the interval
[0, π]?
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Interpolation by piecewise Lagrange polynomials

Not possible to guarantee the uniform convergence of the
Lagrange polynomial with equally spaced nodes

Interpolation with low order polynomial is usually accurate
enough when used on a sufficiently small intervals

This is therefore natural to introduce an interpolation on K
sub-intervals Ij = [xj , xj+1] of length hj using k + 1 equally spaced
nodes in each sub-interval. It can be shown that∥∥∥E k

h

∥∥∥
∞

= max
[a,b]

(E k
h ) = max

[a,b]

(
f − Πk

hf
)
≤ Chk+1 max

ξ∈[a,b]

(
f (k+1)(ξ)

)
(45)

where
h = max

0≤j≤K−1
(hj)

Can obtain a small interpolation error using small values of k but with
sufficiently low values of h.
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Interpolation by piecewise Lagrange polynomials: example

Interpolation error for a first and second order piecewise Lagrange
polynomials of the Runge function f (x) = (1 + x2)−1 in the interval
[−5, 5] using increasing numbers of constant sub-intervals

h
∥∥f − Π1

h

∣∣
∞

∥∥f − Π2
h

∣∣
∞

5 0.4153 0.0835
2.5 0.1787 0.0971
1.25 0.0631 0.0477
0.625 0.0535 0.0082
0.3125 0.0206 0.0010
0.15625 0.0058 1.382E − 04
0.078125 0.0015 1.7715E − 05


(46)
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Spline interpolation

Interpolation using high order polynomial on a large interval can
lead to bad results at the two bound of the interval

The approximation with piecewise first order or low order
polynomial leads to a global interpolation with discontinuity of
the derivative within the interval

The Spline method:

kind of “minimization of elastic energy”

impose the continuity of the derivative and the second order
derivative in the interval
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Spline interpolation

Definition:

A function S is a spline of degree k on [a,b] if

1 The domain of S is [a,b]

2 S ,S ′,S (2), ...,S (k−1) are continuous on [a,b]

3 There is a partition {ti}n
i=0 of [a, b] such that on [ti , ti+1], S is a

polynomial of degree ≤ k.
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Spline interpolation

If the partition has n + 1 knots the spline of degree k is defined by
n(k + 1) parameters.

We have:

n + 1 constrains s(x(i)) = y(i) for i = 0, 1, ..., n

k(n − 1) constrains for the continuity of S ,S ′,S (2), ...,S (k−1) at
the inner knots i = 1, ..., n − 1.

⇒ k − 1 more unknown as equations (degrees of freedom)

For k = 3 (cubic spline) we need 2 extra constrains:

Usual choice: S ′′(t0) = S ′′(tn) = 0 (47)

Other choice (not-a-knot condition):

S ′′′(t−1 ) = S ′′′(t+
1 ) and S ′′′(t−n−1) = S ′′′(t+

n−1) (48)
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Spline interpolation

Let’s define n + 1 nodes in the [a, b] interval
a = x0 < x1 < x2 < ... < xn = b and the corresponding values
fi = f (xi ), i = 0, ..., n. The objective is to find an efficient method to
define the interpolating cubic spline (continuous second derivative) for
these values.

Let’s define

fi = s(xi ), mi = s ′(xi ), Mi = s ′′(xi ), i = 0, ..., n. (49)

and si (x), the spline on [xi , xi−1] and hi = (xi − xi−1) for i = 0, ..., n.

For cubic spline, s ′′ is linear

s ′′i−1(x) = Mi−1
xi − x

hi
+ Mi

x − xi−1

hi
for x ∈ [xi−1, xi ] (50)
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Spline interpolation

By integrating twice the formula, we obtain:

si−1(x) = Mi−1
(xi − x)3

hi
+ Mi

(x − xi−1)
3

hi
+ Ci−1(x − xi−1) + C̃i−1,

(51)
Ci−1 and C̃i−1 are determined by:

s(xi−1) = fi−1 and s(xi ) = fi (52)

this gives

C̃i−1 = fi−1 −Mi−1
h2

6
(53)

Ci−1 =
fi − fi−1

hi
− h2

6
(Mi −Mi−1) (54)
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Spline interpolation

Continuity of the first derivative at xi :

s ′(x−i ) =
hi

6
Mi−1 +

hi

3
Mi +

fi − fi−1

hi

= −hi+1

3
Mi −

hi+1

6
Mi+1 +

fi+1 − fi
hi+1

= s ′(x+
i ) (55)

where
s ′(x±i ) = lim

t→0
s ′(xi ± t) (56)

This leads to the following linear system:

µiMi−1 + 2Mi + λiMi+1 = di , i = 1, ..., n − 1 (57)

where we have defined:

µi =
hi

hi + hi+1
, λi =

hi+1

hi + hi+1

di =
6

hi + hi+1

(
fi+1 − fi

hi+1
− fi − fi−1

hi

)
, i = 1, ..., n − 1 (58)
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Spline interpolation

The system (57) has n + 1 unknowns and n − 1 equations. 2
additional conditions need to be fixed.

Usually, these two conditions are:

2M0 + λ0M1 = d0, µnMn−1 + 2Mn = dn (59)

where λ0 ≥ 0, µm ≥ 1 and d0, dn are given values.

For natural splines satisfying s ′′(a) = s ′′(b) = 0, one must
choose M0 = Mn = 0

An other usual choice is to take λo = µn = 1 and
d0 = dn = dn−1 (considering a and b as internal points)
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Spline interpolation

The equation (57) completed by the last two conditions can be
expressed in a tri-diagonal matrix form:

2 λ0 0 . . . 0

µ1 2 λ1
...

0
. . .

. . .
. . . 0

... µn−1 2 λn−1

0 . . . 0 µn 2




M0

M1
...

Mn−1

Mn

 =


d0

d1
...

dn−1

dn

 (60)

Can be solved efficiently using the Thomas algorithm
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Introduction
to

Spectral Methods
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Spectral methods

spectral methods are a class of method much less used for general
purpose in CFD than Finite differences and Finite Volumes.

due to high level of accuracy, these methods can be of interest
for simulations using simple geometries (especially DNS).

the derivations are performed with Fourier Transform or one of
their generalizations.

the simplest spectral methods deal with periodic functions
specified by their values at a uniformly spaced set of points.
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Spectral methods: Fourier Transform

f (xi ) =

q=+N/2−1∑
q=−N/2

f̂ (kq)e
ikqxi , (61)

where xi = i∆x , i = 1, 2, ...,N and kq = 2πq/∆xN.

The equation (61) can be inverted by

f̂ (kq) =
1

N

i=N∑
i=1

f (xi )e
−ikqxi , (62)

Changing q from q to q ± lN (where l is integer) produces no change
of e±ikqxi at the grid points. These propriety is know as aliasing.
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Spectral methods: derivation

The equation (61) can be used for the interpolation of a function f (x).

Differentiation of the formula to obtain the Fourier series for the
derivatives:

df

dx
=

q=+N/2−1∑
q=−N/2

ikq f̂ (kq)e
ikqx , (63)

Fourier coefficients of df /dx are simply ikq f̂ (kq)
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Spectral methods: derivation

Method to derive a function:

Given f (xi ), use (62) in order to evaluate the Fourier coef. f̂ (kq);

Compute the Fourier coef. of g = df /dx by ĝ(kq) = ikq f̂ (kq);

Evaluate the series (63) to obtain g at the grid points.

The method can easily be used for higher order derivatives by using:

dpf

dxp
=

q=+N/2−1∑
q=−N/2

(i kq)
p f̂ (kq)e

ikqx , (64)
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Spectral methods

The cost of a derivative is in N2 (same cost for any derivative
order)

Fast Fourier Transform reduces the cost down to N log2 N

The function must be periodic and the grid points equally spaced
⇒ main limitation of Fourier spectral method for general
problems

Other functions than complex exponential can be used for
complex geometries and different boundary conditions (but
important modification of the method)
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Pseudospectral methods

Let us consider the simple Burger equation periodic on [0, 2π]:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 (65)

In pseudo spectral method, the discrete Fourier transform is applied to
the above equation which lead to:

∂ûk

∂t
+

(̂
u

∂u

∂x

)
k

+ νk2ûk = 0 (66)

where (̂
u

∂u

∂x

)
k

(67)

is the discrete Fourier transform of the nonlinear term. This term can
be evaluated by a convolution product defined as

(̂uv)k =
∑

p+q=k

ûp v̂q (68)

However, the evaluation of this convolution product requires O(N2)
operations. J.-P. Laval IMP: Numerical Methods
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Pseudospectral methods

Pseudospectral methods evaluate the nonlinear terms in
physical space instead of by convolution products.

Uj =

N/2+1∑
k=−N/2

ûke ikxj

Vj =

N/2+1∑
k=−N/2

v̂ke ikxj

j = 0, 1, ...,N − 1 (69)

Wj = UjVj j = 0, 1, ...,N − 1 (70)

Ŵk =
1

N

N−1∑
j=0

Wje
−ikxj k = −N

2
, ...,

N

2
− 1 (71)

where
xj = 2πj/N (72)
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Pseudospectral methods

Due to the discrete transform orthogonality relation

1

N

N−1∑
j=0

e−ipxj =

{
1 if p = Nm, m = ±1,±2, ...
0 otherwise

(73)

we obtain

Ŵk =
∑

m+n=k

ûmv̂n +
∑

m+n=k±N

ûmv̂n (74)

= ûk +
∑

m+n=k±N

ûmv̂n (75)

The second term on the right hand side is the aliasing error.
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Spectral methods: aliasing

main drawback of the spectral method

can be an important source of errors in the non-linear equations
(such as the NS equations).

the aliasing is not restricted to the spectral method (high order
finite difference methods)

several possibilities to suppress aliasing in spectral methods

Truncation (3/2 rule)
Phase shifting
...
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Spectral methods: Aliasing removal by Truncation

The simplest method (and the more used) to remove aliasing is the
truncation. The key is to use discrete Fourier transform with M rather
than N points with M ≥ 3N/2

yj = 2πj/M (76)

Uj =

N/2+1∑
k=−N/2

ũke ikyj j = 0, 1, ...,M − 1 (77)

Vj =

N/2+1∑
k=−N/2

ṽke ikyj j = 0, 1, ...,M − 1 (78)

Wj = UjVj (79)

where

ũk =

{
ûk |k| ≤ N/2
0 otherwise

(80)
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Spectral methods: Aliasing removal by Truncation

The ũk coefficient are the ûk coefficients padded with zeros for the
additional wavenumbers.

W̃k =
1

M

M−1∑
j=0

Wje
−ikyj j = −M

2
, ...,

M

2
− 1 (81)

then
W̃k =

∑
m+n=k

ũmṽn +
∑

m+n=k±M

ũmṽn (82)

As we are only interested in W̃k for |k| ≤ N/2 we can choose M such
that the second term on the right-hand side vanishes for these k.
Since ũm and ṽm are zero for |m| > N/2, the worse case condition is

−N

2
− N

2
≤ N

2
− 1−M or M ≥ 3N

2
(83)

The operation count for this transform method is (45/4)Nlog2(3N/2)
which is roughly 50% larger than the aliased method.
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Chebyshev Discretization

The Chebyshev polynomial are defined on [−1, 1] by:

Tk(x) = cos(kθ), θ = arccos(x), k = 0, 1, 2, ... (84)

where Tk(x) is a polynomial of order k. One can prove the following
recurrence formula:{

Tk+1(x) = 2xTk(x)− Tk−1(x)
To(x) = 1, T1(x) = x

(85)

The Chebyshev expansion of a function f is:

f (x) =
∞∑

k=0

f̂kTk(x) f̂k =
1

ck

∫ 1

−1
f (x)Tk(x)(1− x2)−1/2dx (86)
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Chebyshev Discretization
The derivative of a function f expanded in Chebyshev polynomials
according to (86) can be represented formally as

f ′ =
∞∑

m=0

f̂
(1)
m Tm, f̂

(1)
m =

2

cm

∞∑
p=m+1
p+m odd

p f̂
(1)
p (87)

this expression is a consequence of the relation

2Tk(x) =
1

k + 1
T ′

k+1(x)− 1

k − 1
T ′

k−1(x), k ≥ 1 (88)

which is a consequence of a trigonometric relation. From (87) one has

2kf̂k = ck−1f̂
(1)
k−1 − f̂

(1)
k+1, k ≥ 1 (89)

Since f̂
(1)
k = 0 for k ≥ N, the non-zero coefficients are computed by

ck f̂
(1)
k = f̂

(1)
k+2 + 2(k + 1)f̂k+1 0 ≥ k ≥ N − 1 (90)

total number of operation to differentiate in physical space is
(5log2N + 10)N (when using FFT)
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Finite Differences
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Finite differences

Finite difference method: the derivatives of the equations are
approximated using Taylor expansion

Replace the partial derivative by a combination of punctual
values at a finite given number of discrete points or mesh points.

Very simple and effective on structured grid

Easy to obtain higher-order schemes

Requires limited computing resources

but ... difficult to apply to unstructured grid (complex
geometries)
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Finite differences

Given a function u(x , y , z , t) of space and time. By definition of the
derivative :

∂u

∂x
= lim

∆x→0

u(x + ∆x , y , z , t)− u(x , y , z , t)

∆x

If ∆x is small, a Taylor development of u(x , y , z , t) in the vicinity of
x is given by :

u(x + ∆x , y , z , t) = u(x , y , z , t) + ∆x
∂u

∂x
(x , y , z , t) (91)

+
∆x2

2

∂u2

∂x2
(x , y , z , t) +

∆x3

6

∂u3

∂x3
(x , y , z , t) + ...

Truncating the expansion at the first order in ∆x , one obtain:

u(x + ∆x , y , z , t)− u(x , y , z , t)

∆x
=

∂u

∂x
(x , y , z , t) + O(∆x)

The power of ∆x by which the truncation error O(∆x) tends to zero
is called order of the method.
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Finite differences

Let consider u(x) in the interval [0, 1] and a mesh composed with
N+1 points xi for i=0,...,N equally spaced with a spacing ∆x
(xi = i∆x are the mesh points).

ui = u(xi ) : discrete value of u(x) at point xi(
∂u

∂x

)
x=xi

=

(
∂u

∂x

)
i

: derivative of u at the point xi
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Finite differences

The matrix notation of the finite difference scheme at the first order is:(
∂u

∂x

)
i

=
ui − ui−1

∆x
+ O(∆x) (92)

This scheme is said upwind as it uses the value of the function at the
point i − 1.

It is possible to define other finite difference scheme of the first order
for the first derivative of u(x):(

∂u

∂x

)
i

=
ui+1 − ui

∆x
+ O(∆x) (93)

This last scheme is said ”forward”.
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Finite differences: higher order

Higher order finite differences can be obtained by combination of
Taylor expansion in the vicinity of xi :

ui+1 = u(xi + ∆x) = u(xi ) + ∆x

(
∂u

∂x

)
i

+
∆x2

2

(
∂2u

∂x2

)
i

+O(∆x3)

ui−1 = u(xi −∆x) = u(xi )−∆x

(
∂u

∂x

)
i

+
∆x2

2

(
∂2u

∂x2

)
i

+O(∆x3)

Subtracting the two expansions above leads to:

ui+1 − ui−1 = 2∆x

(
∂u

∂x

)
i

+ O(∆x3) (94)

This gives the second order central scheme which is the approximation
of the first derivative of u:(

∂u

∂x

)
i

=
ui+1 − ui−1

2∆x
+ O(∆x2) (95)
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Finite differences: higher order

To obtain a higher order scheme, additional point in the neighborhood
of xi are required.

The number of points required to write a finite difference scheme are
called the stencil

A third order scheme for the first derivative reads:(
∂u

∂x

)
i

=
−ui+2 + 6ui+1 − 3ui − 2ui−1

6∆x
+ O(∆x3) (96)

This scheme has a stencil of 4 (ui+2, ui+1, ui , ui−1)
Other third order schemes are possible for the first derivative.
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Finite differences: higher order derivative

The principle of the method is identical for higher order schemes
(based on the Taylor expansion)

u(xi + ∆x) = u(xi ) + ∆x

(
∂u

∂x

)
i

+
∆x2

2

(
∂2u

∂x2

)
i

+
∆x3

6

(
∂3u

∂x3

)
i

+ O(∆x4)

u(xi −∆x) = u(xi )−∆x

(
∂u

∂x

)
i

+
∆x2

2

(
∂2u

∂x2

)
i

− ∆x3

6

(
∂3u

∂x3

)
i

+ O(∆x4)

Must find the right combination which suppress the first derivatives
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Finite differences: higher order derivative

Taking the sum of the two equations leads to:

ui+1 + ui−1 − 2ui = ∆x2

(
∂u

∂x2

)
i

+ O(∆x4) (97)

This gives the central second order scheme which approximates the
second derivative of u:(

∂2u

∂x2

)
i

=
ui+1 − 2ui + ui−1

∆x2
+ O(∆x2) (98)

Other formulations such as upwind of forward scheme can be derived
for the second order derivative(

∂2u

∂x2

)
i

=
ui+2 − 2ui+1 + ui

∆x2
+O(∆x)

(
∂2u

∂x2

)
i

=
ui − 2ui−1 + ui−2

∆x2
+O(∆x)

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NSSpectral methods Finite Differences Finite Volumes Finite Elements

Finite differences: remarks

Using combination of Taylor expansion, one can derive higher
order finite difference schemes for any order of the derivative

The stencil (number of Taylor expansions) must be adapted to
the order of the scheme

Drawback of the method: can be very long (higher order schemes
and schemes for higher order derivatives)

⇒ Can use a systematic framework using difference operators
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Finite differences: general method

General procedures to developed in order to generate finite difference
schemes to any order of accuracy (Hildebrand (1956))

Displacement operator E : E ui = ui+1

Forward difference operator δ+ : δ+ ui = ui+1 − ui

Backward difference operator δ− : δ− ui = ui − ui−1

Central difference operator δ : δ ui = ui+1/2 − ui−1/2

Averaging operator µ : µ ui = 1/2
(
ui+1/2 + ui−1/2

)
Differential operator D : D u = ∂u

∂x
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Finite differences: general method

Obvious relations can be defined between these operators:

δ+ = E − 1 (99)

δ− = 1− E−1 (100)

where

E−1ui = ui−1 (101)

This leads to
δ− = E−1δ+ (102)

and
δ+δ− = δ−δ+ = δ+ − δ− = δ2 (103)

but also

δµ = (E+1/2 − E−1/2)
1

2
(E 1/2 + E−1/2) =

1

2
(E 1 − E−1) (104)
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Finite differences: general method

Using the general definition, n being positive or negative:

Enui = ui+n (105)

We also have

δ = E 1/2 − E−1/2 (106)

µ =
1

2
(E 1/2 + E−1/2) (107)

Any of the above difference operators taken to a given power n, is
interpreted as n repeated actions of this operator. For instance:

δ+2 = δ+δ+ = (E − 1)2 = E 2 − 2E + 1 (108)

δ+3 = δ+δ+δ+ = (E − 1)3 = E 3 − 3E 2 + 3E − 1 (109)

(110)
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Finite differences: general method

Link the derivative operator D to the finite displacement operators
E , δ+, δ−, δ, µ, .... The relation are obtained using a Taylor expansion:

u(x + ∆x) = u(x) + ∆x
∂u

∂x
(x) +

∆x2

2!

∂u2

∂x2
(x) +

∆x3

3!

∂u3

∂x3
(x) + ...

which can be written in operators form:

Eu(x) =

(
1 + ∆xD +

(∆xD)2

2!
+

(∆xD)3

3!
+ ...

)
u(x) (111)
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Finite differences: general method

Taking into account the Taylor expansion of the exponential function

Eu(x) = e∆xDu(x) (112)

or symbolically
E = e∆xD (113)

This relation can be inverted as:

∆xD = ln(E ) (114)

but also
(∆x)nDn = (ln(E ))n (115)
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Finite differences: forward formula

Formulas for forward differences are obtained by introducing the
relation between E and the forward operator δ+

∆xD = ln(E ) = ln(1 + δ+) (116)

= δ+ − δ+2

2
+

δ+3

3
− δ+4

4
+ ... (117)

The order of the accuracy of the approximation increase with the
number of terms kept in the right-and-side.

1st order : truncation error equal to
∆x

2

∂2u

∂2x

2nd order : truncation error equal to
∆x2

3

∂3u

∂3x(
∂u

∂x

)
i

= D ui =
−3ui + 4ui+1 − ui+2

2∆x
+

∆x2

3

(
∂3u

∂x3

)
i

(118)
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Finite differences: backward formula

Similarly, backward difference formula at increasing order of accuracy
can be obtained by application of the relation (114):

∆xD = ln(E ) = −ln(1− δ−) (119)

= δ− +
δ−2

2
+

δ−3

3
+

δ−4

4
+ ... (120)

Considering the first two terms of the right-hand side, we obtain the
second order formula:(

∂u

∂x

)
i

= D ui =
3ui − 4ui−1 + ui−2

2∆x
+

∆x2

3

(
∂3u

∂x3

)
i

(121)
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Finite differences: central formula

To obtain central finite difference formula: must link the operator E
to the central difference operator δ (or to δ and µ).

δ ui = ui+1/2 − ui−1/2 = (E 1/2 − E−1/2) ui (122)

and therefore

δ = e∆xD/2 − e−∆xD/2 = 2 sinh

(
∆xD

2

)
(123)

which through inversion leads to:

∆xD = 2 sinh−1

(
δ

2

)
(124)

= 2

[
δ

2
− 1

2 · 3

(
δ

2

)3

+
1 · 3

2 · 4 · 5

(
δ

2

)5

− 1 · 3 · 5
2 · 4 · 6 · 7

(
δ

2

)7

+ ...

]

= δ − δ3

24
+

3δ5

640
− 5δ7

7168
+ ... (125)
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Finite differences: central formula

By using the expansion formula for sinh−1:

sinh−1(x) = x − 1

2 · 3
x3 +

1 · 3
2 · 4 · 5

x5 − 1 · 3 · 5
2 · 4 · 6 · 7

x7 + (126)

... +(−1)n
1 · 3 · 5 . . . (2n − 1)

2 · 4 · 6 . . . (2n)(2n + 1)
x2n+1 + O(x2n+2)

The same formula can be used for the nth order derivative:

(∆xD)n =

(
δ − δ3

24
+

3δ5

640
− 5δ7

7168
+ ...

)n

(127)

For odd values of n, the formula will used values of the function u at
the half integer mesh points (ui+k/2 where k an integer).
Example:(

∂u

∂x

)
i

= Dui =
1

∆x
δui + O(∆x2) =

ui+1/2 − ui−1/2

∆x
+ O(∆x2)

(128)
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Finite differences: central formula

For odd values of derivative n, in order to use the values of the
function at the node points (ui+k), one must link the operator E to δ
and µ.

From the definition of δ and µ

1 +
δ2

4
= µ2 (129)

or

1 = µ

(
1 +

δ2

4

)−1/2

= µ

(
1− δ2

8
+

3δ4

128
− 5δ6

1024
+ ...

)
(130)
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Finite differences: central formula

by using the following relation:

(1 + x)a = 1 + a x +
a(a− 1)

2!
x2 +

a(a− 1)(a− 2)

3!
x3 + ...

+
a(a− 1)(a− 2) . . . (a− n + 1)

n!
xn + O(xn+1) (131)

After multiplying the eq. (125) by eq. (130) we obtain:

∆xD = µ

(
δ − 1

3!
δ3 +

12 · 22

5!
δ5 − ...

)
(132)

Hence we obtain the central difference formula for the first order
derivative with integer mesh point values
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Finite differences: central formula

Example: the second order accurate central difference approximations
of the first derivative is given by:

Dui =
1

∆x

(
µδ − 1

3!
µδ3

)
ui (133)

=
1

∆x

(
1

2
(E 1 − E−1)(1− 1

6
δ2)

)
ui (134)

=
1

2∆x

(
(E 1 − E−1)(1− 1

6
(E 1 + E−1 − 2))

)
ui (135)

=
1

12∆x

(
8(E 1 + E−1)− (E 2 − E−2)

)
ui (136)

=
−ui+2 + 8ui+1 − 8ui−1 + ui−2

12∆x
(137)
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Finite differences: high order derivatives

The same techniques using operator can be applied to higher order
derivative. Starting from the formula (124), the central formula of the
n order derivative is obtained by:

Dnui =

(
2

∆x
sinh−1

(
δ

2

))n

ui (138)

=
1

(∆x)n

[
δ − δ3

24
+

3δ5

640
− 5δ7

7168
+ ...

]n

ui (139)

=
1

(∆x)n
δn

[
1− n

24
δ2 +

n

64

(
22 + 5n

90

)
δ4

− n

45

(
5

7
+

n − 1

5
+

(n − 1)(n − 2)

35

)
δ6 + ...

]
ui (140)
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Finite differences: high order derivatives

For n even, this equation generates difference formulas with the
function values at the integer mesh point

For n uneven, the difference formulas involve points at
half-integer mesh points.

In order to involve only points of i for n uneven, one can use the
relation of Eq. (129)

Dnui =
µ

[1 + (δ2/4)]1/2

[
2

∆x
sinh−1

(
δ

2

])n

ui (141)

= µ
δn

(∆x)n

[
1− n + 3

24
δ2 +

5n2 + 52n + 135

5760
δ4 + ...

]
ui
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Finite differences

First order forward finite difference

ui ui+1 ui+2 ui+3 ui+4

∆x u′i -1 1

∆x2 u′′i 1 -2 1

∆x3 u′′′i -1 3 -3 1

∆x4 u
(4)
i 1 -4 6 -4 1
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Finite differences

First order backward finite difference

ui−4 ui−3 ui−2 ui−1 ui

∆x u′i -1 1

∆x2 u′′i 1 -2 1

∆x3 u′′′i -1 3 -3 1

∆x4 u
(4)
i 1 -4 6 -4 1
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Finite differences

Second order central finite difference

ui−2 ui−1 ui ui+1 ui+2

2∆x u′i -1 1

∆x2 u′′i 1 -2 1

2∆x3 u′′′i -1 2 -2 1

∆x4 u
(4)
i 1 -4 6 -4 1
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Finite differences

Fourth order central finite difference formulas

ui−3 ui−2 ui−1 ui ui+1 ui+2 ui+3

12∆x u′i 1 -8 8 -1

12∆x2 u′′i -1 16 -30 16 -1

8∆x3 u′′′i -1 -8 13 -13 8 1

6∆x4 u
(4)
i -1 12 -39 56 -39 12 -1
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Finite differences

Exercise
Derive the second order backward difference fomula for the second
derivative using difference operators.

Answer

(
∂2u

∂x2

)
i

=
2ui − 5ui−1 + 4ui−2 − ui−3

∆x2
− 11

12
∆x2

(
∂4u

∂x4

)
(142)
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Finite differences: non-uniform mesh

Two solutions:

1 Transformation from the physical space (x , y , z) to a Cartesian
computational space (ξ, η, ζ)

coordinate transformation formulas
(ξ = ξ(x , y , z), η = η(x , y , z), ζ = ζ(x , y , z))
the derivative formulas can be used in (ξ, η, ζ)
the transformed equations contains some metric terms which have
to be discretised

2 The effect of non-uniform mesh on FD formulas can be deduced
from the Taylor development.
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Finite differences: non-uniform mesh

Forward and Backward FD formulas deduced from the Taylor
development: (

∂u

∂x

)
i

=
ui+1 − ui

∆xi+1
− ∆xi+1

2

(
∂2u

∂x2

)
(143)(

∂u

∂x

)
i

=
ui − ui−1

∆xi
+

∆xi

2

(
∂2u

∂x2

)
(144)

where
∆xi = xi − xi−1 (145)
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Finite differences: non-uniform mesh

To obtain the second order central formula: combination of the
forward and backward formulas to eliminate the first order term
(second order derivative)(

∂u

∂x

)
i

=
1

∆xi + ∆xi+1

[
∆xi

∆xi+1
(ui+1 − ui ) +

∆xi+1

∆xi
(ui − ui−1)

]
−∆xi∆xi+1

6

(
∂3u

∂x3

)
(146)
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Finite differences: non-uniform mesh

Starting from the Taylor expansions, one can also derive the forward
and backward second order formula involving three consecutive mesh
points (Exercise).(

∂u

∂x

)
i

=

(
∆xi+1 + ∆xi+2

∆xi+2
· ui+1 − ui

∆xi+1
− ∆xi+1

∆xi+2
· ui+2 − ui

∆xi+1 + ∆xi+2

)
+

∆xi+1(∆xi+1 + ∆xi+2)

6

(
∂3u

∂x3

)
(147)
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Finite differences: non-uniform mesh

starting from the Taylor expansions, one can derive a central finite
difference scheme for the second derivative (Exercise):(

∂2u

∂x2

)
i

=

(
ui+1 − ui

∆xi+1
− ui − ui−1

∆xi

)
2

∆xi+1 + ∆xi

+
1

3
(∆xi+1 −∆xi )

(
∂3u

∂x3

)
−

∆x3
i+1 + ∆x3

i

12(∆xi+1 + ∆xi )

(
∂4u

∂x4

)
(148)

The truncation error is proportional to the difference of the
consecutive mesh size (∆xi+1 −∆xi )

⇒ If the size of the mesh varies abruptly, for instance ∆xi+1 ' 2∆xi ,
the formula will only be first-order accurate.
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Finite differences: compact scheme

Implicit formula: formula where the value of the derivative at a given
order is function of the function and several order derivative of the
function evaluated at the neighboring points

There are called Compact Formula as it allows to evaluate the
derivative at a given order of accuracy with a smaller stencil than
for explicit formula

Drawback: the evaluation of the derivative is not straightforward
as it requires the resolution of the linear system of equation

Depending of the stencil of the formula, the resolution of this
system can be performed using efficient resolution methods much
faster than standard methods developed for a full matrix
(Thomas Algorithm).
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Finite differences: compact scheme

First derivative with a centered scheme on a uniform distribution of
grid points:

β(f ′i−2 + f ′i+2) + α(f ′i−1 + f ′i+1) + f ′i =

c
fi+3 − fi−3

6h
+ b

fi+2 − fi−2

4h
+ a

fi+1 − fi−1

2h
(149)

The elations between the coefficients a, b, α, β are derived by
matching the Taylor series coefficients of various order

The first unmatched coefficient determines the formal trunction
error of the approximation (149).
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Finite differences: compact scheme

These constrains are:

a + b + c = 1 + 2(α + β) (second order) (150)

a + 22b + 32c = 2 +
3!

2!
(α + 22β) (fourth order) (151)

a + 24b + 34c = 2 +
5!

4!
(α + 24β) (sixth order) (152)

a + 26b + 36c = 2 +
7!

6!
(α + 26β) (eighth order) (153)

a + 28b + 38c = 2 +
9!

8!
(α + 26β) (tenth order) (154)
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Finite differences: compact scheme

The equation to satisfy for a odd order of accuracy are
automatically verified because the formula was already
symmetrized (keeping only 5 unknowns)

In the case of periodic boundary conditions, the following linear
system of equation can be solved without any other conditions

The non-periodic case requires additional relations appropriate
for the near boundary nodes using forward and backward formula

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NSSpectral methods Finite Differences Finite Volumes Finite Elements

Finite differences: compact scheme

Taking not the full system of 5 equations but only the p first
equations (p < 5) leads to a family of scheme of order 2p with
(5− p) free parameters.

Taking β = 0 leads to a tri-diagonal system to solve. Together
with c = 0, one obtains a one parameter (α) family of fourth
order tri-diagonal schemes

β = 0, a =
2

3
(α + 2), b =

1

3
(4α− 1), c = 0. (155)

For α = 1/4 the resulting scheme is the classical Padé scheme

For α = 1/3, the leading order coefficient vanishes and the
scheme is formally six order accurate.
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Finite differences: compact scheme

The formula (149) with periodic conditions

266666666666666666664

1 α β 0 0 . . . 0 β α
α 1 α β 0 . . . . . . 0 β
β α 1 α β 0 . . . . . . 0

0
. . .

. . .
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
. . . 0

0 . . . . . . 0 β α 1 α β
β 0 . . . . . . 0 β α 1 α
α β 0 . . . . . . 0 β α 1

377777777777777777775

2666666666666666666664

f ′1
f ′2
f ′3
.
.
.

.

.

.

.

.

.
f ′n−2
f ′n−1
f ′n

3777777777777777777775

=

266666666666666664

0 a b c 0 . . . −c −b −a
−a 0 a b c . . . . . . −c −b
−b −a 0 a b c . . . . . . −c
−c −b −a 0 a b c 0

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.

.

.

. −c −b −a 0 a b c
c . . . . . . −c −b −a 0 a b
b c . . . . . . −c −b −a 0 a
a b c . . . . . . −c −b −a 0

377777777777777775

266666666666666666664

f1
f2
f3
.
.
.

.

.

.

.

.

.
fn−2
fn−1
fn

377777777777777777775

(156)
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Finite differences: compact scheme

For non-periodic case, one needs to derive forward or backward
formula. Forward formula with a 5-5 stencil:

f ′i + α f ′i+1 + β f ′i+2 + γ f ′i+3 + δ f ′i+4 =

1

h
(a fi + b fi+1 + c fi+2 + d fi+3 + e fi+5) (157)

Maximum order: 8 (no free parameters)

α = 16, β = 36 γ = 16, δ = 1,

a = −25

6
, b = −80

3
, c = 0, d =

80

3
, e =

25

6
.
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Finite differences: compact scheme

Compact formula can be derived for any order of the derivative

For derivative of order n can use formula with all derivatives up
to order n

Need to solve a larger system
Not necessary an improvement

Example:

αf
(2)
i−1 + f

(2)
i +αf

(2)
i+1)+βf

(1)
i−1 + γf

(1)
i +βf

(1)
i+1)+ afi−1 + bfi + afi−1 = 0
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Finite differences: discretisation error

The accuracy of the finite difference formula are linked to their
order of accuracy,

For a given stencil, the order of accuracy is different for explicit
or implicit schemes

The order of accuracy is not the only parameter to characterize
the quality of a formula

The spectral methods are useful to analyze differently the
truncation error

f (xi ) =

q=+N/2−1∑
q=−N/2

f̂ (kq)e
ikqxi , (158)

The derivative can be applied term-by-term to the series

⇒ sufficient to consider the differentiation of φ(x) = e ikx for any k
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Finite differences: discretisation error

Exact derivative of φ(x) = e ikx : ∂φ/∂x = ike ikx

Applying first order explicit central difference operator to this function(
∂φ

∂x

)FD

i

' φi+1 − φi−1

xi+1 − xi−1
, (159)

we obtain:(
∂φ

∂x

)FD

i

' e ik(x+∆x) − e ik(x−∆x)

2∆x
= i

sin(k∆x)

∆x
e ikx = i k ′ e ikx

k ′ is the modified wavenumber (in general complex)

<(k ′) = k ′r : associated with the dispersive error

=(k ′) = k ′i : associated with the dissipative error

For central finite defference formula, k ′ is real

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NSSpectral methods Finite Differences Finite Volumes Finite Elements

Finite differences: discretisation error

Example 1: fourth order central explicit finite difference formula(
∂φ

∂x

)
i

' −φi+2 + 8φi+1 − 8φi−1 + φi−2

12∆x
(160)

leads to

k ′ =
sin(k∆x)

3∆x
[4− cos(k∆x)] (161)

For small k the expression of the effective wavenumber can be
expanded with Taylor series

k ′ =
sin(k∆x)

∆x
' k − k3(∆x)2

6
. (162)

Example 2: (5,5) stencil central compact finite difference formula:

k ′ =
a sin(k) + b/2 sin(2k) + c/3 sin(3k)

1 + 2α cos(k) + 2β cos(2k)
. (163)
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Finite differences: discretisation error

Figure: Modified wavenumbers (real part) for several explicit and implicit
central finite difference formula (kmax = π/∆x).
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Finite differences: discretisation error

Example 3: (5,7) stencil forward compact finite difference formula

f ′i + α f ′i+1 + β f ′i+2 + γ f ′i+3 + δ f ′i+4 =

1

h
(a fi + b fi+1 + c fi+2 + d fi+3 + e fi+4 + h fi+5 + g fi+6)

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NSSpectral methods Finite Differences Finite Volumes Finite Elements

Finite differences: discretisation error

Figure: Modified wavenumbers for several compact forward finite difference
formula.
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Finite differences: discretisation error

The spectral characteristic of the error is not the only thing to
take into account

Some schemes can have very good spectral behavior but unusable

System must be well conditioned in order to be inverted

⇒ reason why some combinations of stencil are not possible

Ex: (5-5) stencil for forward finite difference is unusable

Same analysis can be made with finite difference scheme for the
second derivative

<(k ′) associated to the dissipative error
=(k ′) associated to the disperssive error

Compact finite difference scheme can also be derived for irregular
grid using the same technique.

⇒ can lead to VERY complex formula (thousands of lines !)
⇒ coefficients of the system may have to be computed numerically
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Finite differences: discretisation error

The spectral characteristic of high order finite difference schemes
is similar to the ones of spectral method.

This means that Runge instabilities (spurious oscillations) can
appear near the boundaries

One must introduce a stretching of the mesh near the boundaries

This has no effect on the order of the scheme, but it may
significantly reduce the error level
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Finite Volumes
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Finite Volumes

The finite volume method is based on the integration of the equation
written in integral form in elementary volumes.

the method is well suited for the spatial discretisation of the
conservation laws.

the method is used intensively in fluid mechanics

implementation is rather simple when the elementary volumes are
rectangles or parallelepiped

can be used with any shape of elementary volumes (tetrahedral,
hexahedral, prismatic, pyramidal, polyhedral,...)

method well suited for flows in complex geometries

most of numerical codes in fluid mecanics are based on this
method (FLUENT, StarCD, CFX, elSA, Code Saturn, ...)
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Finite Volumes

Conservation law of a physical quantity ω inside a mesh of volume Ω
and using a flux F (ω) and a source term S(w).

∂

∂t

∫
Ω

ω dΩ +

∫
Ω

div[F (ω)] dΩ =

∫
Ω

S(ω) dΩ (164)

Let’s call Σ the mesh surface with its external norm n. The
Ostrogradski theorem leads to:

∂

∂t

∫
Ω

ω dΩ +

∫
Σ

F · n dΣ =

∫
Ω

S(ω) dΩ (165)

The integral

∫
Σ

F · n dΣ represents the sum of fluxes through each

face of the mesh.
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Finite Volumes

The flux is supposed to be constant on each face. As a consequence,
the integral becomes a discret sum on each face of the mesh:∫

Σ
F · n dΣ =

∑
mesh face

Fface · nfaceΣface (166)

The quantity Fface = F (ωface) is an approximation of the flux F on
one face of the mesh and is called the numerical flux onto the
considered face.

The spatial discretisation leads to compute the budget of the fluxes
on a elementary mesh. This budget includes the sum of all
contributions evaluated on each face of the mesh.
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Finite Volumes

Example with the explicit Euler method for time integration:

Let’s define ∆ω the increment of the quantity ω between two
successive time steps.

∂

∂t

∫
Ω

ω dΩ = Ω

(
dω

dt

)
mesh

= Ω
∆ω

∆t
(167)

Eventually, the discretised conservation law using finite volume
methods is

Ω
∆ω

∆t
+

∑
mesh face

Fface · nfaceΣface = ΩS (168)
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Finite Volumes

The finite volume method can be decomposed in several steps:

Decompose the geometry in elementary mesh

Initialize the quantity ω in the computational domain

Initiate the temporal integration process :

? computation of the fluxes budget by mesh using a numerical
scheme

? computation of the source term
? computation of the temporal increment using a time numerical

scheme
? application the boundary conditions
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Finite Volumes: 1D case

Let’s consider the 1D conservation law:

∂

∂t

∫
u dx +

∫
∂f (u)

∂x
dx = 0 (169)

where u is a physical quantity function of the space variable x and of
the time t and f (u) is a function of u.

The computational domain is divided into N meshes centered in xi .
Each mesh is of size hi = xi+1/2 − xi−1/2. The half-integer index
stands for the interface of the mesh with the neighbooring meshes.

Figure: 1D Grid
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Finite Volumes: 1D case

the time is discretised into constant intervals ∆.

u is supposed constant within each mesh and equal to an
approximated value of the mean.

un
i as the mean value inside the ith mesh centered on xi at the

time t = n∆t.

The approximated value is usually defined as the value of the
function u at the center of the mesh (Cell-Centered Finite
Volume): un

i = u(xi , t) .
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Finite Volumes: 1D case

The spacial discretisation is performed by a mesh-by-mesh integration
of the conservation law:

∂

∂t

∫
maille

u dx +

∫
maille

∂f (u)

∂x
dx = 0 (170)

So, for the ith mesh centered on xi , at time t = n∆t:

∂

∂t

∫ xi+1/2

xi−1/2

u dx +

∫ xi+1/2

xi−1/2

∂f (u)

∂x
dx = 0 (171)
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Finite Volumes: 1D case

After integration, this leads to

hi
∂un

i

∂t
+ f̂ n

i+1/2 − f̂ n
i−1/2 = 0 (172)

where the term f̂ n
i+1/2 is an approximation of the flux f (u) at the

interface xi+1/2 at time n∆t. This term is called the numerical flux
at the interface xi+1/2 and is evaluated as a function of mean value of
u in the neighbooring mesh.

By using, the explicite Euler method for time integration:

hi
un+1
i − un

i

∆t
+ f̂ n

i+1/2 − f̂ n
i−1/2 = 0 (173)
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Finite Volumes: Example with Dirichlet conditions

Let’s consider the following differential equation:{
−u′′ = f (x); x ∈]0, 1[
u(0) = α; u(1) = β

(174)

The interval ]0, 1[ is discretised into N meshes of center xi and of
size hi = xi+ 1

2
− xi− 1

2

The function u is supposed to be constant inside each mesh
(x ∈ [xi− 1

2
, xi+ 1

2
], u(x) = ui )
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Finite Volumes: Example

The spacial discretisation using finite volume consist in a cell-by-cell
integration of the differential equations∫ x

i+ 1
2

x
i− 1

2

u′′ =

∫ x
i+ 1

2

x
i− 1

2

f (x)dx (175)

which becomes after integration:

u′(xi− 1
2
)− u′(xi+ 1

2
) = hi f̄i for i = 1, ...,N (176)

where f̄i is the average value of f over the ith cell

f̄i =
1

hi

∫ x
i+ 1

2

x
i− 1

2

f (x)dx (177)
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Finite Volumes: Example

Next step: define u′(xi− 1
2
) as a function of the unknown ui

⇒ the most natural choice is to take the average of u′ in [xi−1, xi ]

u′(xi− 1
2
) =

1
hi−1+hi

2

∫ xi

xi−1

u′(x)dx

=
u(xi )− u(xi−1)

hi−1/2

=
ui − ui−1

hi−1/2
(178)

with

hi−1/2 =
hi−1 − hi

2
(179)

The borders require a special treatment with a different formulation.
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Finite Volumes: Example

Left condition: use average value of u′ on [x1/2, x1] instead of [x0, x1]

u′(x1/2) =
2

h1

∫ x1

x1/2

u′(x)dx

=
2(u1 − u(0))

h1
=

2(u1 − α)

h1
(180)

Rigth condition: use average value of u′ in [xN , xN+1/2] instead of
[xN , xN+1]

u′(xN+1/2) =
2

hN

∫ xN+1/2

xN

u′(x)dx

=
2(u(1)− uN)

hN
=

2(β − uN)

hN
(181)
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Finite Volumes: Example

The finite volume discretisation is:

ui − ui−1

hi−1/2
− ui+1 − ui

hi+1/2
= hi f̄i for i = 2, ...,N − 1

2(u1 − α)

h1
− u2 − u1

h3/2
= h1f̄1

uN − uN−1

hN−1/2
− 2(β − uN)

hN
= hN f̄N

(182)

In the particular case of regular mesh of size h the finite volume
method becomes:

2ui − ui−1 − ui+1

h2
= f̄i for i = 2, ...,N − 1

3u1 − u2

h2
= f̄1 + 2

α

h2

3uN − uN−1

h2
= f̄N + 2

β

h2

(183)
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Finite Volumes: 2D

Figure: a) “cell-centered” structured finite volume mesh b) “cell vertex”
structured finite volume mesh c) “cell-centered” unstructured finite volume
mesh d) “cell vertex” unstructured finite volume mesh ([1])
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Finite Volumes: 2D

The conservation equation for discrete volume is

∂

∂t

∫
Ω

U dΩ +

∫
S

~F · d~S =

∫
Ω

QdΩ (184)

When applied to the elementary mesh ABCD of Fig. 8, the equation
becomes:

∂

∂t

∫
Ωij

U dΩ +

∫
ABCD

(f dy − g dx) =

∫
Ωij

QdΩ (185)

where f and g are the Cartesian components of the flux vector ~F .
The oriented surface vector for the side AB is defined by

~SAB = ∆yAB
~i −∆xAB

~j = (yB − yA)~i − (xA − xB)~j (186)

The finite volume equation for the cell Ωij becomes:

∂

∂t
(UΩij) +

∑
ABCD

[fAB(yB − yA)− gAB(xB − xA)] = (QΩ)ij (187)
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Finite Volumes: 2D

By defining ~xAB = ~xA − ~xB (where ~xA is the position vector at the
point A) we have

ΩABCD =
1

2
|~xAC × ~xBD |

=
1

2
[(xc − xA)(yD − yB)− (yC − yA)(xD − xB)]

=
1

2
(∆xAC∆yBD −∆xBD∆yAC ) (188)

The right-hand side of the equation must be positive for a cell ABCD
where A,B,C,D is located counterclockwise.

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NSSpectral methods Finite Differences Finite Volumes Finite Elements

Finite Volumes: 2D

The evaluation of the flux component along the sides such as
fAB , gAB depends on the selected scheme and on the position of the
variable with respect to the cell.

2 types of discretisation schemes:

“centered” : based on a local estimation of the fluxes

“upwind”: the flux through the cell face is a function of the
propagation direction of the wave component
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Finite Volumes: 2D

For central scheme and cell-centered finite volume methods:

(1) Average fluxes :

fAB =
1

2
(fij + fi+1,j) (189)

fij = f (Uij) (190)

This formulation is second order accurate.

(2) Other choice (not identical due to non-linearity) :

fAB = f

(
Uij + Ui+1,j

2

)
(191)
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Finite Volumes: 2D

(3) One can take for f the average of the fluxes in A and B:

fAB =
1

2
(fA + fB) (192)

where

fA = f (UA); UA =
1

4
(Uij + Ui+1,j + Ui+1,j−1 + Ui ,j−1) (193)

or the fluxes are averaged as

fA =
1

4
(fij + fi+1,j + fi+1,j−1 + fi ,j−1) (194)
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Finite Volumes: upwing scheme

For upwind scheme and cell-centered method, a convective flux is
evaluated as a function of the propagation direction of associated
convection speed determined by the flux Jacobian:

~A(U) =
∂~F

∂U
= a~x + b~y (195)

with
a(U) = ∂f /∂U and b(U) = ∂g/∂U. (196)

The simplest upwind scheme takes the cell side flux equal to the flux
generated in the upstream cell

(~F · ~S)AB = (~F · ~S)ij if (~A · ~S)AB > 0

(~F · ~S)AB = (~F · ~S)i+1,j if (~A · ~S)AB < 0
(197)
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Finite Volumes: upwing scheme

For upwind scheme and cell-vertex method, a possibility is to define:

(~F · ~S)AB = (~F · ~S)CD if (~A · ~S)AB > 0

(~F · ~S)AB = (~F · ~S)EF if (~A · ~S)AB < 0
(198)
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Finite Volumes: upwing scheme

Property of upwind schemes:

It never yield oscillatory solutions

However it is numerically diffusive

The numerical diffusion is magnified in multidimensional
problems if the flow is oblique to the grid

Very fine grids are required to obtain accurate solution
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Finite Volumes: 2nd order upwing scheme

Another straightforward approximation of the value at the cell volume
center is a linear interpolation between the two nearest nodes:

At the middle xi+1/2,j of segment AB on a Cartesian grid we have

fAB = λfi+1,j + (1− λ)fij (199)

where the linear interpolation factor λ is defined as

λ =
xi+1/2,j − xi ,j

xi+1,j − xi ,j
(200)

The equation (199) is second order accurate

simplest second order accurate and one of the most widely used

as it is 2nd order, it may produce oscillatory solutions
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Finite Volumes: QUICK scheme

The next logical improvement is the approximation to variable profile
between xi ,j and xi+1,j by 2nd order polynomial: need to use the data
at one more point.

This point is taken on the upstream side:

xi−1,j if the flow is from xi ,j to xi+1,j ((~A · ~S)AB > 0)

xi+1,j if the flow is from xi+1,j to xi ,j ((~A · ~S)AB < 0)

For (~A · ~S)AB > 0:

fAB =
6fi−1,j + 3fi ,j + fi+1,j

8
(201)

The approximation is called the Quadratic Upwind Interpolation
(QUICK) approximation and is third order accurate (exept when used
with midpoint rule approximation of the surface integral ⇒ stay 2nd

order
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Brief Introduction
to

Finite Elements
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Finite Elements (FE)

The method consist in approaching, in a finite dimension sub-space, a
problem defined in a variational form in an infinite dimension space.

method well suited for problem in equilibrium

allows to deal with complex geometries

expensive in terms of CPU time and memory requirement

use by several commercial CFD codes (ANSYS, CATIA, ....)
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Finite Elements: 1D case

Let’s take a simple differential equation{
−u′′(x) = f (x), x ∈]0, 1[
u(0) = u(1) = 0

Let’s define a function v(x) ∈ C 1([0, 1]), such that v(0) = v(1) = 0,
on can write:

−
∫ 1

0
u′′(x)v(x) dx =

∫ 1

0
f (x)v(x) dx

By integrating by part, we obtain∫ 1

0
u′(x)v ′(x) dx =

∫ 1

0
f (x)v(x) dx ∀v ∈ V (202)

with V = v ∈ C 0([0, 1]); v(0) = v(1) = 0, v ′ piecewise continuous,
a vectorial subspace of C 1([0, 1]).

A solution in variational form (202) is named a weak solution of the
original differential problem.
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Finite Elements: 1D case

we need to write the approximated problem in a finite dimension
vectorial sub-space.

Ṽ a vectorial sub-space of V of finite dimension N.

φ1, φ2, ..., φn be N functions linearly independent of V ( create a
basis of Ṽ )

Any function ũ of Ṽ can be decomposed as:

ũ(x) =
N∑

j=1

ujφj(x)
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Finite Elements: 1D case

Solving the original differential system leads to find a solution ũ ∈ Ṽ
such that ∫ 1

0
ũ′(x)ṽ ′(x) dx =

∫ 1

0
f (x)ṽ(x) dx ∀ṽ ∈ Ṽ

This means looking for N real u1, u2, u3, ..., uN that verify:

N∑
j=1

uj

∫ 1

0
φ′j(x)ṽ ′(x) dx =

∫ 1

0
f (x)ṽ(x) dx ∀ṽ ∈ Ṽ

or
N∑

j=1

uj

∫ 1

0
φ′j(x)φ′i (x) dx =

∫ 1

0
f (x)φi (x) dx ∀φ̃i ∈ Ṽ
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Finite Elements: 1D case

Let’s define A the N × N matrix of elements aij and B the N
components vector defined by:

aij =

∫ 1

0
φ′j(x)φ′i (x) dx et bi =

∫ 1

0
f (x)φi (x) dx (203)

By definition, the matrix A is symmetric.

If u is the vector of the N unknown u1, u2, u3, ..., uN , the differential
problem reduces to the resolution of the linear system:

A · u = b (204)

⇒ one must choose the N functions φi in order to lead to a simple
system to solve:
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Finite Elements: 1D case

One choice: φi (x) polynomial functions of degree 1

φi (x) =


x − xi−1

xi − xi−1
if xi−1 ≤ x ≤ xi

x − xi+1

xi − xi+1
if xi ≤ x ≤ xi+1

0 otherwise

These function are named one degree finite elements

φ′i (x) =


1

xi − xi−1
if xi−1 ≤ x ≤ xi

1

xi − xi+1
if xi ≤ x ≤ xi+1

0 otherwise

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NSSpectral methods Finite Differences Finite Volumes Finite Elements

Finite Elements: 1D case

One degree finite elements leads to a tri-diagonal matrix A

aii =

∫ 1

0
φ′i (x)φ′i (x) dx =

1

xi − xi−1
+

1

xi+1 − xi

ai ,i+1 =

∫ 1

0
φ′i+1(x)φ′i (x) dx =

−1

xi+1 − xi

ai ,i−1 =

∫ 1

0
φ′i (x)φ′i−1(x) dx =

−1

xi − xi−1

b can be evaluated using the trapezoidal formula
(
∫ b
a g(x)dx = (g(a)+g(b)

2 (b − a))

bi =

∫ 1

0
f (x)φi (x) = fi

(
xi+1 − xi−1

2

)
Linear system to solve:

ui − ui−1

xi − xi−1
− ui+1 − ui

xi+1 − xi
=

xi+1 − xi−1

2
fi i = 1, ...,N
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Finite Elements: 1D case

Comparison with to FD central second order formula

ui − ui−1

xi − xi−1
− ui+1 − ui

xi+1 − xi
=

xi+1 − xi−1

2
fi i = 1, ...,N

Rigorously identical formulation with this choice of finite elements

For uniform distribution of points the finite element discretisation
becomes:

−ui+1 + 2ui − ui−1

(∆x)2
= fi i = 1, ...,N
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Finite Elements: summary

To summarize, the finite element methods consist in :

Choosing N points between 0 and 1 and choosing the finite
element φi

Compute the elements of the matrix A

Compute the elements of the vector b (by choosing an
integration formula))

Solving the linear system A · u = b where u is the vector of
unknowns
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Solving Linear Systems
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Some definitions

Let’s define a matrix A with m lines and n columns

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 (205)

for (n = m) the trace and determinant of A is define by:

tr(A) =
n∑

i=1

aii , det(A) =


a11 if n = 1
n∑

j=1

∆ijaij for n > 1 (206)

with
∆ij = (−1)i+jdet(Aij) (207)

and Aij is the matrix of order n − 1 obtained from A by removing the
i th line and the j th column.
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Some definitions

The rank of the matrix A (rg(A)) is the maximum number of
independent column vectors of A.

For A a real or complex square matrix of order n; λ is a eigenvalue
of A if it exists a vector x 6= 0 such as Ax = λx

The eigenvalues are solution of the following characteristic polynomial:

p(λ) = det(A− λI ) = 0 (208)

One can show that

det(A) =
n∏

i=1

λi , tr(A) =
n∑

i=1

λi (209)

The matrix A is called singular if it has at least one null eigenvalue.
The spectral radius of A is defined by:

ρ(A) = max
λ∈σ(A)

|λ| (210)
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Some definitions

Some properties of a matrix:

Symmetric : AT = A
Orthogonal : ATA = AAT = 1
Hermitian : A = A∗

Normal : AA∗ = 1

Definition of some norm:

‖A‖1 = max
j=1,...,n

n∑
i=1

|aij |

‖A‖∞ = max
i=1,...,n

n∑
j=1

|aij |

‖A‖2 =
√

ρ(A∗A) = σ1(A) = largest singular value of A
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Some definitions

The matrix A is said to be diagonal dominant if:

|aii | ≥
n∑

j=1,j 6=i

|aij |, i = 1, .., n (dominant by line)

|aii | ≥
n∑

j=1,j 6=i

|aji |, i = 1, .., n (dominant by column)

(211)
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Some definitions

Decomposition in singular values:

Let consider A ∈ Cn×m, one can find two unity matrix U ∈ Cm×m

and V ∈ Cn×n such as:

U∗AV = Σ = diag(σ1, σ2, ...σp) ∈ Rn×m with p = min(m, n)

and
σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0

This relation is called decomposition in singular values of A and the
scalar σi are called singular values of A.
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Introduction to linear system

A linear system of m equations and n unknown

n∑
j=1

aijxj = bi , i = 1, ...,m, (212)

can be written in matrix form

Ax = b, (213)

where A = (aij) is the coefficient matrix and b = (bi ) is the
right-hand side vector, and x is the unknown vector

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NS

Introduction to linear system

If (n = m), the existence and the unicity of the solution is
demonstrated if one of the following conditions is satisfied:

1. A is invertible

2. rg(A) = n

3. the homogeneous system Ax = 0 has only the null solution.
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Introduction to linear system

The solution of the system Ax = b is given by the Cramer’s formula:

xj =
∆j

det(A)
(214)

where ∆j is the determinant of the matrix obtained by replacing the

jth column of A by b.

However, the cost the Cramer’s formula is prohibitive (n+1)!
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Well posed problems

Let’s consider the following problem: find x such as

F (d , x) = 0 (215)

where d is the ensemble of data from which the solution is dependent
and F is the functional relation between x and d

Definition: The problem is well posed (or stable) if the solution x
exist, is unique and continuously depends on the data d (small
perturbations on the data induce small modifications of the solution).

Let’s define δd a small perturbation of the data and δx the induce
modification of the solution. The propriety of linear dependence with
respect of the data can be defined by:

∀ε > 0 ∃ δ(ε) such as ‖δd‖ ≤ δ then ‖δx‖ ≤ ε (216)
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Well posed problems

relative conditioning propriety:

K (d) = sup

{
‖δx‖/‖x‖
‖δd‖/‖d‖

, δd 6= 0, d + δd ∈ D

}
. (217)

When x = 0 and d = 0 the absolute conditioning can be introduced
instead:

K (d) = sup

{
‖δx‖
‖δd‖

, δd 6= 0, d + δd ∈ D

}
. (218)

The problem is hill conditioned if K (d) is “large”for any admissible
data d . The term “large” need to be considered with respect to the
problem.
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Conditionning

Let’s consider the linear system Ax = b and only the data (which
correspond to b) are perturbed

The conditioning of the system can be estimated by

K (d) ' ‖A−1‖‖b‖
‖A−1b‖

=
‖Ax‖
‖x‖

‖A−1‖ ≤ ‖A‖‖A−1‖ = K (A) (219)

where K (A) is the conditioning of the matrix which is defined by:

Kp(A) = ‖A‖p‖A−1‖p (220)

where ‖.‖p is the p-norm and Kp(A) is the conditioning of the matrix
A under the p-norm
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Conditionning

One can demonstrate several properties of the conditioning:

1 = ‖AA−1‖ ≤ ‖A‖‖A−1‖ = K (A)

K (A) = K (A−1)

K (αA) = K (A) (221)

(222)

For the norm p = 2 we have

K2(A) = ‖A‖2‖A−1‖2 =
σ1(A)

σn(A)
(223)

σ1(A) and σn(A) are the larger and the smallest singular values of A
respectively.
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Conditionning

Because of the round-off errors a numerical methods gives exact
solution (x + δx) of the perturb system

(A + δA)(x + δx) = b + δb (224)

In such case we have the following relation:

‖δx‖
‖x‖

≤ K (A)

1− K (A)‖δA‖/‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
(225)

In the case where δA = 0, the relative error can be bounded by:

1

K (A)

‖δb‖
‖b‖

≤ ‖δx‖
‖x‖

≤ K (A)
‖δb‖
‖b‖

(226)
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Direct methods

For a system Lx = b where L is a lower triangular invertible matrix

x1 =
b1

l11

xi =
1

lii

bi −
i−1∑
j=1

lijxj

 , i = 2, ..., n (227)

For a system Ux = b where U is a upper triangular invertible matrix

xn =
bn

unn

xi =
1

uii

bi −
n∑

j=i+1

uijxj

 , i = n − 1, ..., 1 (228)

The total number of operations in the two cases is of the order of n2
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Gauss Elimination

The Gauss elimination method is based on a transformation of the
original system Ax = b into an equivalent system Ux = b̂ where U is
a upper triangle matrix and b̂ is the modified right hand side.

A = A(1) and b = b(1) are the modified matrix and vector after the
first step of the algorithm

mi ,p =
a
(p)
ip

a
(p)
pp

(229)

The unknown x1 can be eliminated from the lines i = 2, ..., n by
subtracting mi1 times the first line

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j , i , j = 2, ..., n, (230)

b
(2)
i = b

(1)
i −mi1b

(1)
1 , i = 2, ..., n, (231)
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Gauss Elimination

The new system A(2)x = b(2) (equivalent to the first one):
a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
... . . .

...

0 a
(2)
n2 . . . a

(2)
nn




x1

x2
...
xn

 =


b

(1)
1

b
(2)
2
...

b
(2)
n

 (232)

Next step: eliminate x2 of the lines 3, ..., n ... and so on
At the (n-1) step we obtain A(n)x = b(n):

a
(1)
11 a

(1)
12 . . . . . . a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...

0
. . .

...

0 a
(n)
nn




x1

x2
...
...
xn

 =



b
(1)
1

b
(2)
2
...
...

b
(n)
n


(233)
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Gauss Elimination

The Gauss method requires that a
(k)
kk 6= 0, 1 ≤ k ≤ n − 1

aii 6= 0 does not prevent the appearance of a
(k)=0
kk .

Example:

A =

1 2 3
2 4 5
7 8 9

 ⇒ A(2) =

1 2 3
0 0 −1
0 −6 −12

 (234)

The Gauss method must be stopped at the second step as a
(2)
22 = 0
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Gauss Elimination

The Gauss method can be used without problem for the following
categories of matrix:

the matrix with a dominant diagonal by line

the matrix with a dominant diagonal by column

the positive defined symmetrical matrix

The global cost of the Gauss method is proportional to n3/3

⇒ rather expensive.

For large system that are not sparse, Gauss elimination is
susceptible to accumulation errors

The method is not easy to vectorize or parallelize
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LU Decomposition

The Gauss method is equivalent to the factorization of the
matrix A by the product of two matrix A = LU with U = A(n)

The matrix L and U only depend on A and not on the right hand
side b

The same factorization can be used to solve several system with
the same matrix but different right hand side b
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LU Decomposition

In the Gauss procedure:

A(k+1) = MkA
k (235)

where the kth Gauss transformation matrix Mk is defined by:

Mk =



1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 1 0 0
0 −mk+1,k 1 0
...

...
...

...
. . .

...
0 . . . −mn,k 0 . . . 1


(236)

where the transformation matrix Mk is defined by:

(Mk)ip = δip −mikδkp (237)
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LU Decomposition

The Gauss elimination procedure generates the matrix
Mk , k = 1, ..., n− 1 and the matrix U satisfying the following relation:

Mn−1Mn−2 . . .M1A = LU. (238)

Due to the properties of the matrix Mk , we have the following
relation:

A = M−1
1 M−1

2 . . .M−1
n−1U = LU (239)

with

L =



1 0 . . . . . . 0

m21 1
...

... m32
. . .

...
...

...
. . . 0

mn1 mn2 . . . mn,n−1 1


(240)
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LU Decomposition

Once the matrix L and U defined, solving the linear system Ax = b is
equivalent to solve successively two triangular systems:

Ly = b

Ux = y (241)

The cost of the LU factorization is the same the the Gauss
method

Many system involving the same matrix can be solve using the
same LU decomposition.
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Thomas’s algorithm

Let’s consider a tri-diagonal matrix A defined as:

A =


a1 c1 0

b2 a2
. . .

. . . cn−1

0 bn an

 (242)

The matrix L and U from the LU factorization of A are bi-diagonal:

L =


1 0
β2 1

. . .
. . .

0 βn 1

 , U =


α1 c1 0

α2
. . .
. . . cn−1

0 αn

 (243)

where the coefficients αi and βi are defined by:

α1 = a1, βi =
bi

αi−1
, αi = ai − βici−1, i = 2, ..., n (244)
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Thomas’s algorithm

This algorithm is known as the Thomas algorithm.

Using the LU factorization, the system can be solved using the
following formula:

y1 = b1, yi = bi − βiyi−1, i = 2, ..., n (245)

xn = yn/αn, xi = (yi − ci xi+1)/αi , i = n − 1, ..., 1. (246)

The Thomas algorithm requires only 8n − 7 operations.
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Linear Iterative methods

Iterative methods give the solution x of a linear system after an
infinite number of iterations

Each step requires a number of operation of the order of n2

Iterative methods become useful if they can converge with a
number of step < n

The discretisation error is usually much higher than the accuracy
of the computer arithmetic so there is no reason to solve the
system that accurately.
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Linear Iterative methods: convergence

The basic idea of the iterative method is to construct a iterative
relation of vector x(k) such as

x = lim
k→∞

x(k) (247)

where x is the solution of the system Ax = b.

The computation must be stopped at the first iteration p such as
‖x(p) − x‖ < ε where ε is a convergence parameter and ‖.‖ is vectorial
norm.
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Linear Iterative methods: convergence

Consider the matrix problem

Ax = b (248)

After n iterations we have an approximated solution x(n) which does
not satisfy this equation exactly. Instead, there is a non-zero residual
r (k)

Ax(k) = b− r (k) (249)

By subtracting this equation to the equation Ax = b, we obtain the
relation between the convergence error

e(k) = x− x(k) (250)

where x is the converged solution and the residual

Ae(k) = r (k) (251)
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Linear Iterative methods: convergence

Let’s consider an iterative scheme for a linear system which can be
written as:

Mx(k+1) = Nx(k) + q (252)

or
x(k+1) = Bx(k) + M−1q (253)

where B is the iteration matrix.

Since, by definition, at convergence x(n+1) = x(n) = x, we must have:

A = M−N and q = b (254)

or more generally

PA = M−N and q = Pb (255)

where P is a non-singular pre-conditioning matrix.
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Linear Iterative methods: convergence

Solving the system (252) must be cheap and the method must
converge rapidly.

Inexpensive iteration requires that the computation of N x(k) and
solution of the system must be easy to perform.

⇒ M must be easily inverted (diagonal, tri-diagonal or
triangular, ...).

For rapid convergence, M should be a good approximation of A,
making N x “small”
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Linear Iterative methods: Jacobi

If the diagonal coefficients of A are not zero, the unknown xi from the
i th equation can be extracted as follow:

xi =
1

aii

bi −
n∑

j=1,j 6=i

aijxj

 , i = 1, ..., n (256)

In the Jacobi method, starting from an arbitrary initial value x0, the
solution xk+1 is computed with the following recurrence formula:

x
(k+1)
i =

1

aii

bi −
n∑

j=1,j 6=i

aijx
(k)
j

 , i = 1, ..., n (257)
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Linear Iterative methods: Jacobi

This relation is equivalent to the following decomposition of the
matrix A:

M = D, N = D− A = E + F (258)

D is the diagonal matrix made of the diagonal coefficients of A
E is a upper triangular matrix of coefficients

eij = −aij if i > j
eij = 0 if i ≤ j

F is a lower triangular matrix of coefficients

fij = −aij if j > i
fij = 0 if j ≤ i

The iteration matrix BJ (such as x(k+1) = BJ x(k+1) + D b) for the
Jacobi method is given by:

BJ = M−1N = D−1(E + F) = I−D−1A (259)
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Linear Iterative methods: Jacobi Over Relaxation

A generalization of the Jacobi method is the Jacobi over relaxation
(JOR) method where a relaxation parameter ω is introduced.

x
(k+1)
i =

ω

aii

bi −
n∑

j=1,j 6=i

aijx
(k)
j

+ (1− ω)x
(k)
i , i = 1, ..., n (260)

The corresponding iteration matrix is:

BJOR = ω BJ + (1− ω) I. (261)

For ω = 1, the method is equivalent to the standard Jacobi method.
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Linear Iterative methods: Gauss-Seidel

The Gauss Seidel method differs from the Jacobi method by the

fact that, for the (k + 1)th iteration the values of x
(k+1)
i already

computed are used to update the solution for the remaining values:

x
(k+1)
i =

1

aii

bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 , i = 1, ..., n

(262)
This method leads to the following decomposition of the matrix A:

M = D− E, N = F (263)

and the associated iteration matrix is:

BGS = (D− E)−1 F (264)
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Linear Iterative methods: successive over relaxation

Starting for the Gauss-Seidel method one can define the successive
over relaxation (SOR) method

x
(k+1)
i =

ω

aii

bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

+(1−ω)x
(k)
i , i = 1, ..., n

(265)
The corresponding iteration matrix is

BSOR(ω) = (I− ω D−1E)−1 [(1− ω) I + ω D−1 F] (266)

For ω = 1, the method is equivalent to the Gauss-Seidel method. The
method is named under-relaxation for ω ∈]0, 1[, and
over-relaxation for ω > 1
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Richardson stationary method

Let consider the linear system Ax = b and

B = I− P−1A (267)

the iteration matrix associated to iterative method
x(k+1) = x(k) + P−1r(k).

The iterative procedure can be generalized by introducing a
relaxation parameter α.

This leads to the Richardson stationary method:

x(k+1) = x(k) + αP−1r(k), k ≥ 0. (268)
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Richardson unstationary method

More generally, α may depends on the iteration. This leads to the
unstationary Richardson method or semi-iterative method:

x(k+1) = x(k) + αkP
−1r(k), k ≥ 0. (269)

The associated iteration matrix at the kth step is:

Bαk
= I− αkP

−1A (270)

The Jacobi or Gauss-Seidel iterations can be seen as stationary
Richardson methods with α = 1 and P = D and P = D− E
respectively.

By defining the preconditioned residual z(k) = P−1r(k), we obtain:

x(k+1) = x(k) + αkz
(k) (271)

and
r(k+1) = b− Ax(k+1) = r(k) − αkAz(k) (272)
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Richardson unstationary method

To summarize, the unstationary Richardson method at the step k + 1
consists in:

solve the linear system Pz(k) = r(k)

compute the acceleration parameter αk

update the solution x(k+1) = x(k) + αkz
(k)

update the residual r(k+1) = r(k) − αkAz(k).
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Richardson unstationary method

Theorem

Let suppose the matrix P invertible and the eigenvalues of P−1A
strictly positive and such that λ1 ≥ λ2 ≥ ... ≥ λn > 0. Thus, the
stationary Richardson method is convergent if and only if
0 < α < 2/λ1. Moreover,

αopt =
2

λ1 + λn
(273)

The spectral radius of the iteration matrix Bα is minimal if α = αopt

with

ρopt = min
α

[ρ(Bα)] =
λ1 − λn

λ1 + λn
(274)
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Multi-grid methods

The rate of convergence of iterative methods depends on the
eigenvalues of the iterative matrix associated with the method.

The eigenvectors associated with the eigenvalues determines the
spatial distribution of the convergence errors

Some of iterative methods produce errors that are smooth
function of the spatial coordinates

If the error is smooth, the update can be computed on a coarse
mesh (twice as coarse)

Iterative methods converge much faster on coarser grids

This suggest that much of the work can be done on a coarser grid
Need to define:

the relationship between the two grid
the finite difference operator on the coarse grid
a method of smoothing the residual from the fine grid to the
coarse grid
a method of interpolating the update or correction from the
coarse grid to the fine one
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Multi-grid methods

Algorithm of the two-grid iterative method:

One the fine grid, perform iterations with a method that gives
smooth errors

Compute the residual on the fine grid

Restrict the residual to the coarse grid

Perform iterations of the correction equations on the coarse grid

Interpolate the correction to the fine grid

Update the solution on the fine grid

Repeat the entire procedure until the residual is reduced to the
desired level

Multi-grid is more a strategy than a particular method.
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Convergence

One need to evaluate the number of iteration kmin which is necessary
for the norm of the error divided by the norm of the initial error to be
lower than a given value ε.
From the consistency condition, we have

e(k+1) = Be(k) (275)

or
e(k) = Bke(0) (276)

and therefore, we have

‖e(k)‖
‖e(0)‖

≤ ‖Bk‖. (277)

So, ‖Bk‖ gives an estimation of the reduction factor of the error norm
after k iteration.
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Convergence

Typically, the iterative process is conducted until

‖e(k)‖ ≤ ε‖e(0)‖ with ε < 1 (278)

If we suppose ρ(B) < 1, then there is a norm ‖ · ‖ such as ‖B‖ < 1.
Therefore, ‖B(k)‖ → 0 when k →∞ and (278) can be satisfied for k
large enough such as ‖B(k)‖ < ε.

Nevertheless, as ‖B(k)‖ < ε, the previous inequality becomes:

k ≥ log(ε)(
1
k log‖B(k)‖

) = − log(ε)

Rk(B)
(279)

where Rk(B) is the average convergence rate.
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Convergence

The above relation is not very useful as it is non-linear in k: can use
the asymptotic rate of convergence R(B)

R(B) = lim
k→∞

Rk(B) = −log(ρ(B)) (280)

to obtain the following estimation:

kmin ' − log(ε)

R(B)
(281)

However, this estimation is rather optimistic.
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Convergence: Criterion based on increments

From the recurrence formula e(k+1) = Be(k) we have:

‖e(k+1)‖ ≤ ‖B‖‖e(k)‖ (282)

As
x = e(k+1) + x(k+1) = e(k) + x(k) (283)

and by using the triangular inequality, we have:

‖e(k+1)‖ ≤ ‖B‖
(
‖e(k+1)‖+ ‖x(k+1) − x(k)‖

)
(284)

and therefore,

‖e(k+1)‖ (1− ‖B‖) ≤ ‖B‖‖x(k+1) − x(k)‖ (285)

or

‖x− x(k+1)‖ ≤ ‖B‖
1− ‖B‖

‖x(k+1) − x(k)‖ (286)

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NS

Convergence: Criterion based on increments

by applying the recurrence formula (282):

‖x(k+1)−x‖ ≤ ‖B‖‖x(k)−x‖ ≤ ‖B‖2‖x(k−1)−x‖ ≤ ... ≤ ‖B‖k+1‖x(0)−x‖

we obtain:

‖x− x(k+1)‖ ≤ ‖B‖k+1

1− ‖B‖
‖x(1) − x(0)‖ (287)

which can be used to estimate the number of iteration necessary to
satisfy ‖e(k+1)‖ ≤ ε.
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Convergence: Criterion based on increments

Practically, an estimation of ‖B‖ can be formulated as:

x(k+1) − x(k) = −(x− x(k+1)) + (x− x(k)) = B(x(k) − x(k−1)) (288)

A maximum of ‖B‖ can be estimated by c = δk+1/δk where
δk+1 = ‖x(k+1) − x(k)‖. By replacing ‖B‖ by c in (286) we can have
an indicator for ‖e(k+1)‖

ε(k+1) =
δ2
k+1

δk − δk+1
(289)

The approximation used for ‖B‖ is such that ε(k+1) can not be used
as overestimation for ‖e(k+1)‖.

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NS

Time Integration
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Time integration

The difference between space and time discretisation comes from the
direction of influence

a force at a given location will influence the flow in the whole
domain (for elliptic problems)

the forcing at a given time will influence the flow only in the
future

unsteady flows are the equivalent of a parabolic problem in time
the time integration methods are step-by-step methods
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Time integration: Two steps Methods

Let’s consider a first order ordinary differential equation with initial
conditions:

dφ(t)

dt
= f (t, φ(t)); φ(t0) = φ0 (290)

If tn = n∆t, the simplest integration methods can be defined by
integrating the equation (290) from the time tn to the time tn+1:∫ tn+1

tn

dφ(t)

dt
dt = φn+1 − φn =

∫ tn+1

tn

f (t, φ(t)) (291)

where φn = φ(tn).

⇒ approximated numerical formula can be used to evaluate the
integral of the right-hand side
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Time integration: Two steps Methods

Figure: Time integration formulas (from [1])

Explicit method: φn+1 can be computed directly from φk , k ≤ n
Implicit method: φn+1 is only defined by a implicit relation using f .
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Time integration: Explicit Euler method

The integral of the function f is estimated with the value of the
function at the initial point tn.

φn+1 − φn = f (tn, φn)∆t (292)

This is the simplest explicit method for time discretisation.

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NS

Time integration: Implicit (Backward) Euler method

The integral of the function f is estimated with the value of the
function at the final point tn+1.

φn+1 − φn = f (tn+1, φn+1)∆t (293)

Implicit as R.H.S is function of tn+1
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Time integration: Leap-Frog Methods

By considering the midpoint (tn+1/2) for the evaluation of the
function, we obtain

φn+1 − φn = f (tn+1/2, φn+1/2)∆t (294)

By considering a time step which is double, this formulation is
equivalent to the Leap-frog formula:

φn+1 − φn−1 = f (tn, φn)2∆t (295)

The Leapd-Frog method is explicit and second order but:

need to know the solution at φ0 and φ1 in order to used the
formula

solution of the even and odd time step number are independent
(divergence of the solutions)
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Time integration: Crank-Nicholson

By using the trapezoid rule to evaluate the integral of f , we obtain
the Crank-Nicholson formula:

φn+1 − φn =
1

2

[
f (tn, φn) + f (tn+1, φn+1)

]
∆t (296)
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Time integration: Predictor Corrector methods

Aim of the Predictor-Corrector methods is to combine the advantages
of explicit methods (simplicity, CPU resources) and implicit methods
(stability for larger time step):

Predictor step: the solution a the new time step φn+1 is predicted by
using the Euler formula:

φ∗n+1 = φn+1 + f (tn, φn)∆t (297)

where * symbol indicates that this is an estimation of the solution at
this time.

Corrector step: by applying the trapezoid rule using φ∗n+1

φn+1 = φn +
1

2

[
f (tn, φn) + f (tn+1, φ∗n+1)

]
(298)

This method is second order accurate.
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Time integration: Multi-points versus Runge Kutta methods

In order to increase the order of accuracy, one must use information
at more points.

The additional points can be :

points at which the function f has already been computed
(tn, tn−1, tn−2, ..., tn−p)

⇒ multi-points Methods

points between tn et tn+1 which are used only for the
computation of the scheme (tn+1/2, ...)

⇒ Runge Kutta methods
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Time integration: Adams Methods

Adams methods are the most well known multi-points methods

They are derived by fitting a polynomial to the derivatives at a
number of points in time

If a Lagrange polynomial is used to fit
f (tn−m, φn−m), f (tn−m+1, φn−m+1), ..., f (tn, φn) we obtain an
Adams Bashforth (explicit) method of order m + 1.

If data at time tn+1 are included into the interpolation
polynomial, Adams Moulton (implicit) methods are obtained
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Time integration: Adams Bashforth

First order Adams Bashforth ( ⇒ corresponds to Explicit Euler)

φn+1 = φn + ∆t f (tn, φn)

Second order Adams Bashforth:

φn+1 = φn +
∆t

2

[
3f (tn, φn)− f (tn−1, φn−1)

]
Third order Adams Bashforth:

φn+1 = φn +
∆t

12

[
23f (tn, φn)− 16f (tn−1, φn−1) + 5f (tn−2, φn−2)

]
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Time integration: Adams Moulton

First order Adams Moulton (⇒ corresponds to Implicit Euler)

φn+1 = φn + ∆t f (tn+1, φn+1)

Second order Adams Moulton (⇒ corresponds to Crank-Nicholson)

φn+1 − φn =
1

2

[
f (tn, φn) + f (tn+1, φn+1)

]
∆t (299)

Third order Adams Moulton:

φn+1 = φn +
∆t

12

[
5f (tn+1, φn+1) + 8f (tn, φn)− f (tn−1, φn−1)

]
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Time integration: Adams Moulton

order n n-1 n-2 n-3 n-4 n-5
1 1
2 3/2 -1/2
3 23/12 -16/12 5/12
4 55/24 -59/24 37/24 -9/24
5 1901/720 -2274/720 2616/720 -1274/720 251/720
6 4277/1440 -7923/1440 9982/1440 -7298/1440 2877/1440 -475/1440

Adams-Bashforth up to the 6th order

order n+1 n n-1 n-2 n-3 n-4
1 1
2 1/2 1/2
3 5/12 8/12 -1/12
4 9/24 19/24 -5/24 1/24
5 251/720 646/720 -264/720 106/720 -19/720
6 475/1440 1427/1440 -798/1440 482/1440 -173/1440 27/1440

Adams-Moulton up to the 6th order
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Time integration: Multi-points methods

In practice, a m − 1 order Adams-Bashforth method is usually used as
predictor and a m order Adams-Moulton method as corrector.

Advantages of Multi-points methods:

relatively easy to construct to program and to use.

require a single evaluation of f (t, φ(t)) by time step (cheap)

Drawback of Multi-points methods

requires data from several prior points in time (need to store
them)

can not be started with the data at only the initial time

⇒ Solution: use smaller time steps using a lower order method
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Time integration: Runge Kutta methods

Runge-Kutta method: time discretisation between tn et tn+1.

The second order Runge-Kutta method consists of two steps:

1 half-step predictor based on the explicit Euler method

2 midpoint rule corrector (which make method second order)

φ∗n+1/2 = φn +
∆t

2
f (tn, φn)

φn+1 = φn + ∆t f (tn+1/2, φ∗n+1/2)

The Runge-Kutta methods are easy to use as we can start the
integration from the initial value only
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Time integration: Fourth order Runge Kutta methods (RK4)

The 4 steps of the fourth order Runge Kutta method are:

1 1st predictor step using explicit Euler at tn+1/2 (→ φ∗n+1/2)

2 2nd predictor step using implicit Euler at tn+1/2 (→ φ∗∗n+1/2)

3 predictor step using midpoint rule at time tn+1 (→ φ∗n+1)

4 corrector step using Simpson formula at tn+1 (→ φn+1)

φ∗n+1/2 = φn +
∆t

2
f (tn, φn)

φ∗∗n+1/2 = φn +
∆t

2
f (tn+1/2, φ∗n+1/2)

φ∗n+1 = φn + ∆t f (tn+1/2, φ∗∗n+1/2)

φn+1 = φn +
∆t

6

[
f (tn, φn) + 2f (tn+1/2, φ∗n+1/2)

+ 2f (tn+1/2, φ∗∗n+1/2) + f (tn+1, φ∗n+1)
]

+ O(∆t5)
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Time integration: Fourth order Runge Kutta methods (RK4)

Main disavantage of Runge-Kutta methods:

requires four evaluation of f per time step (expensive in CPU)

intermediate evaluations must be stored (expensive in memory)

⇒ Low Storage fourth order method which require less
memory storage

However: Runge-Kutta methods of a given order are usuallt more
accurate and more stable than the multi-points methods of the
same order.
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Stability, Consistency,
Convergence
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Stability, Consistency, Convergence

The consistency is the property which ensure that the exact
solution of the discretised equations tend to the exact solution of
the continuous equations when the time and space discretisations
tend to zero (∆t → 0,∆x → 0)

The stability is the property which ensure that the difference
between the numerical solution and the exact solution remains
bounded.

The convergence is the property which ensure that the
numerical solution tends to the (or one) exact solution of the
continuous equation when the grid spacing tends to zero.

Theorem

(Lax Theorem) Given a properly posed linear initial value problem and
a finite difference approximation to it that satisfies the consistency
condition, stability is a necessary and sufficient condition for
convergence
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Consistency

Example of the following conservative equation:

∂u

∂t
+ a

∂u

∂x
= 0 (300)

After discretisation and by using the Euler integration formula:

un+1
i − un

i

∆t
= − a

2∆x
(un

i+1 − un
i−1) (301)

If the function is sufficiently derivable

un+1
i = un

i + ∆t

(
∂u

∂t

)n

i

+
∆t2

2

(
∂2u

∂2t

)
+ ... (302)

un
i+1 = un

i + ∆x

(
∂u

∂x

)n

i

+
∆x2

2

(
∂2u

∂2x

)
+

∆x3

6

(
∂3u

∂3x

)
+ ...(303)

un
i−1 = un

i −∆x

(
∂u

∂x

)n

i

+
∆x2

2

(
∂2u

∂2x

)
− ∆x3

6

(
∂3u

∂3x

)
+ ...(304)
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Consistency

By introducing the development into the equation (301):

un+1
i − un

i

∆t
+ a

un
i+1 − un

i−1

2∆x
−
(

∂u

∂t
+ a

∂u

∂x

)n

i

= +
∆t

2

(
∂2u

∂2t

)n

i

+
∆x2

6

(
∂3u

∂3x

)n

i

+ O(∆t2,∆x4) (305)

As the right hand side of the equation tends to zero when ∆t and ∆x
tend to zero, the numerical scheme is consistent.

The scheme is first order in time and second order in space

The scheme is first order if ∆t/∆x is kept constant

The scheme is second order if ∆t/(∆x)2 is kept constant.
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Consistency

Let’s define: un
i the exact solution of the discretised equation

ũn
i the exact solution of the numerical scheme

The equation (305) becomes :

(
∂ũ

∂t
+ a

∂ũ

∂x

)n

i

= −∆t

2

(
∂2u

∂2t

)n

i

− ∆x2

6

(
∂3u

∂3x

)n

i

+ O(∆t2,∆x4)

(306)

The exact solution of the finite difference equation does not
satisfy exactly the partial differential equation

The solution satisfy an equivalent partial differential equation (or
modified equation)

The difference between the two equations is the truncation
error εT
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Consistency

In this case:

εT = −∆t

2

(
∂2u

∂2t

)n

i

− ∆x2

6

(
∂3u

∂3x

)n

i

+ O(∆t2,∆x4) (307)

which can be written differently by applying the differential equation
to eliminate the time derivative(

∂u

∂t

)n

i

= −a

(
∂u

∂x

)n

i

+ O(∆t,∆x2) (308)

and for the second order derivative(
∂2u

∂t2

)n

i

= −a

(
∂2u

∂x∂t

)n

i

+ O(∆t,∆x2)

= +a2

(
∂2u

∂x2

)
i

+ O(∆t,∆x2) (309)
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Consistency

Therefore,

εT = −∆t

2
a2

(
∂2u

∂x2

)n

i

− a
∆x2

6

(
∂3u

∂x3

)n

i

+ O(∆t2,∆x2) (310)

By keeping only the lowest order, the modified equation becomes

∂u

∂t
+ a

∂u

∂x
= −∆t

2
a2

(
∂2u

∂x2

)n

i

+ O(∆t2,∆x2) (311)

The rhs can be seen as a viscous term with a negative viscous
coefficient (−(∆t/2)a2).

positive viscosity: reduce the oscillations (gradients) ⇒ stable

negative viscosity: amplify the oscillations ⇒ unstable
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Stability

Stability analysis restricted to the study of linear problems

Stability analysis may be difficult for the initial value problems
and problems with boundary conditions

The von Neumann stability method is based on a development
in frequency space.

one of the most used method
can be performed on the equations with constant coefficient and
with periodic boundary conditions
with non-constant coefficients or non-linear terms, the information
on stability becomes very limited

linear stability is a necessary condition, but not a sufficient
condition
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Stability

Definition: Numerical scheme must not allow any error to grow
infinitely when moving from one time step to the next one

Any error εni between the computed solution u and the exact solution
ũ must stay limited for n →∞ at fixed ∆t.

If the error is defined as

εni = un
i − ũn

i (312)

the stability condition can be written as

lim
n→∞

|εni | ≤ K at fixed ∆t (313)

where K is independent of n.
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Stability: Spectral decomposition of error

Example (300) using the explicit Euler integration scheme:

un+1
i − un

i

∆t
= − a

2∆x
(un

i+1 − un
i−1) (314)

we have :

ũn+1
i − ũn

i

∆t
+

εn+1
i − εni

∆t
= − a

2∆x
(ũn

i+1 − ũn
i−1)−

a

2∆x
(εni+1 − εni−1)

As ũn
i satisfies the equation (314), the equation for the error εni is :

εn+1
i − εni

∆t
= − a

2∆x
(εni+1 − εni−1)

This formulation is identical to the initial scheme ⇒ this means that
the error evolves identically to the solution un

i .
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Stability: Spectral decomposition of error

If period boundary conditions, the error εni can be decomposed in
Fourier series for each time step n

εni =
N∑

j=−N

En
j e I kj i∆x =

N∑
j=−N

En
j e I kj i jπ/N

where I =
√
−1 and En

j is the amplitude of the j th harmonic.

The product kj ·∆x can be represented as a phase:

φ ≡ kj ·∆x =
jπ

N

and varies in the domain [−π, π] by steps of π/N.

⇒ Due to the linearity of the scheme any harmonic En
j e Iiφ of εni

satisfies the scheme.

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NS

Stability: Amplification factor

If we consider a single harmonic En
j e Iφ, its temporal evolution is

described by the same equation than for un
i (removing index j):

En+1 − En

∆t
e Iiφ +

a

2∆x
(Ene I (i+1)φ − Ene I (i−1)φ) = 0

or, dividing by e Iiφ

En+1 − En +
σ

2
(Ene Iφ − Ene−Iφ) = 0

where

σ =
a∆t

∆x
(315)
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Stability: Amplification factor

The stability condition will be satisfied if the amplitude of any error
harmonic will not grow in time.

|G | =
∣∣∣∣En+1

En

∣∣∣∣ ≤ 1 ∀φ

where G , which is called the amplification factor, is function of time
and space.

G − 1 +
σ

2
· 2 I sin(φ) = 0

or
G = 1− I σ sin(φ)

Therefore, the stability condition is never verified as

|G |2 = 1 + σ2(sin(φ))2

Central finite difference scheme used for the convection equation with
an explicit Euler scheme unconditionally unstable
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Stability: Example

Stability of the same partial differential equation but with an upwind
discretisation scheme:

un+1
i − un

i

∆t
= − a

2∆x
(un

i+1 − un
i ) (316)

By introducing Ene Iiφ in the equation, we obtain:

(En+1 − En)e Iiφ + σ(Ene Iiφ − Ene I (i−1)φ) = 0

If we divide by e Iiφ:

G = 1− σ + σe−Iφ

= 1− 2σsin(φ/2)2 − Iσsin(φ)
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Stability

If ξ and η are the real part and the imaginary part of G respectively:{
ξ = 1− 2σsin(φ/2)2 = (1− σ) + σcos(φ)
η = −σsin(φ)

(317)

Can be seen as a parametric
equation for G where φ is the
parameter.
⇒ Parametric equation of a
circle centered on the real axis
ξ at 1− σ and with a radius σ.

⇒ Stability condition: 0 < σ ≤ 1 (conditionally stable)
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Stability: CFL condition

The stability condition of most of the explicit schemes for the wave
type equation or convective equations:

“The distance covered during the time ∆t by the disturbances
propagating with a speed a should be lower than the minimum
distance between two mesh points”

The lines PQ, which
are the characteristic
dx/dt = ±a, must
stay in the domain of
dependence of the point
P which means in the
triangle PAC.
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Pressure Velocity Coupling
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Navier Stokes equations: pressure

difficulty to simulate the Navier Stokes equation because de
pressure is not independent

the continuity equation does not have a dominant variable for
incompressible fluid

masse conservation can be seen as a constrain on the velocity
field instead of a real dynamical equation

to overcome this difficulty, the solution is to compute pressure
field which satisfy the continuity equation.

numerical algorithm need to take into acount the strong
pressure-velocity coupling
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Navier Stokes equations: pressure

Velocity component are compute from the momentum equation

Pressure is computed from the continuity equation

Pressure equation is obtained by combination of the two
equations

By taking the divergence of the momentum equation, we obtain a
Poisson equation:

div(grad(p)) = −div

[
div(ρvv − S)− ρb +

∂ρv

∂t

]
where b represent the body forces.
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Navier Stokes equations: pressure

In a Cartesian system of coordinate, the equation becomes

∂

∂xi

(
∂p

∂xi

)
= − ∂

∂xi

[
∂

∂xj
(ρuiuj − τij)

]
+

∂(ρbi )

∂xi
− ∂2ρ

∂t2

For constant viscosity and constant density, the equation reduces to

∂

∂xi

(
∂p

∂xi

)
= − ∂

∂xi

[
∂(ρuiuj)

∂xj

]
(318)

The rhs of the pressure equation is a sum of terms coming from the
momentum equation ⇒ it is important to use a discretisation which is
consistent with the momentum equation.
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Implicit Pressure-Correction Methods

Many methods used to solve the steady problems can be seen as
methods to solve unsteady problem until a convergence state is
reached.

Solving unsteady problems requires a time step adapted to the
accuracy of the integration methods

For steady problems, the time step is chosen in order to reach the
convergence as fast as possible.

The implicit methods are often used to solve steady flows
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Implicit Pressure-Correction Methods

Equation in a symbolic form:

Aui
P un+1

i ,P +
∑

l

Aui
l un+1

i ,l = Qn+1
ui

−
(

δpn+1

δxi

)
P

(319)

P is the arbitrary index of a velocity node

l corresponds to the neighboring points involved in the
discretised equations

Q is the source term and its contains all the terms which can be
computed explicitly as a function of un

i as well as the forcing
terms and the linearized terms

The pressure term is written in a symbolic way as the method
does not depend on the discretisation which is chosen.
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Implicit Pressure-Correction Methods

Because of the non-linearity in the coupling, the differential equation
(319) can not be solve directly as the coefficient A and the source
term Q depend on the solution un+1

i . The only solution is to use an
iterative method.

For unsteady problems, solving the coupled system with a good
accuracy is important

For unsteady problems, the error at each time step may be larger
as only the converged state will be of interest

The iteration, within on time step, for which the coefficient of
the source matrix will be updated is called an external iteration

The iterations which may be used to solve the linear system with
fixed coefficients are called internal iteration.
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Implicit Pressure-Correction Methods

For each external iteration the equation to be solved are:

Aui
P um∗

i ,P +
∑

l

Aui
l um∗

i ,l = Qm−1
ui

−
(

δpm−1

δxi

)
P

(320)

n + 1 has been replaced by a index m (# of the external iteration)

um∗
i is the estimation of the solution un+1

i at the current iteration m

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NSVelocity-Pressure coupling Compressible flows

Implicit Pressure-Correction Methods

The velocity at node P can be obtained by solving the linearized
momentum equation (320):

um∗
i ,P =

Qm−1
ui

−
∑

l A
ui
P um∗

i ,l

Aui
P

− 1

Aui
P

(
δpm−1

δxi

)
P

This equation does not satisfy a-priori the continuity equation as the
pressure used in this equation is from the previous time step
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Implicit Pressure-Correction Methods

For simplicity reason we write:

ũm∗
i ,P =

Qm−1
ui

−
∑

l A
ui
P um∗

i ,l

Aui
P

So, the equation becomes

um∗
i ,P = ũm∗

i ,P −
1

Aui
P

(
δpm−1

δxi

)
P

In the next step, the velocities must be corrected in order to satisfy
the continuity equation:

δ(ρum
i )

δxi
= 0

This can be achieved by correcting the pressure field.
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Implicit Pressure-Correction Methods

The updated velocities and the pressure are linked by the following
equation:

um
i ,P = ũm∗

i ,P −
1

Aui
P

(
δpm

δxi

)
P

(321)

The continuity is forced by plugging the expression for um
i into the

continuity equation in order to obtain a discretised equation for the
pressure:

δ

δxi

[
ρ

Aui
P

(
δpm

δxi

)]
P

=

[
δρũm∗

i

δxi

]
P

(322)

Next step: compute the updated velocities um
i using equation (321).

→ both the velocity field and the pressure satisfy the continuity
equation but not the momentum equation (320)

→ must repeat the same procedure again and again until both the
continuity equation and the momentum equations are satisfied by
the velocity field.
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SIMPLE Method

Methods based on the construction of a velocity field which does
not satisfy the continuity equation but corrected by subtracting
the pressure gradient are named the projection methods.

In most of the cases a pressure correction is used instead of the
pressure itself.

The velocity computed from the linearized momentum equation
and the pressure pm−1 are used as predictor values and a
correction term must be added to it.
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SIMPLE Method

um
i = um∗

i + u′ et pm = pm−1 + p′ (323)

Including the decompositions (323) into the momentum equation

u′i ,P = ũ′i ,P −
1

Aui
P

(
δp′

δxi

)
P

(324)

where ũ′i ,P is defined by:

ũ′i ,P = −
∑

l A
ui
l u′i ,l

Aui
P

(325)
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SIMPLE Method

When the continuity equation is applied to the corrected velocities,
and using (323):

δ

δxi

[
ρ

Aui
P

(
δp′

δxi

)]
P

=

[
δρum∗

i

δxi

]
P

+

[
δρũ′i
δxi

]
P

(326)

→ the correction of velocities are unknown and it is usual to
neglect them

→ once the pressure correction is solved, the velocities are
updated using the equations (323) and (324)

This method is known as the SIMPLE method (Semi-Implicit
Method for Pressure Linked Equations)
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SIMPLE Method: summary
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SIMPLEC Method

Approximation of the velocity correction u′i (instead of neglecting it)
by a weighted value of the neighboring nodes.

u′i ,P '
∑

l A
ui
l u′i ,l∑

l A
ui
l

(327)

This allows an approximation of ũ′i ,P from equation (325) by:

ũ′i ,P ' −u′i ,P

∑
l A

ui
l

Aui
P

, (328)

Once inserted into (324)

u′i ,P = − 1

Aui
P +

∑
l A

ui
l

(
δp′

δxi

)
P

(329)

This methods is known as the SIMPLEC method.
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SIMPLEC method: summary
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PISO Method

neglect ũ′i ,P in the first correction step (same as SIMPLE)

apply a new step of velocity correction u′′

u′′i ,P = ũ′i ,P −
1

Aui
P

(
δp′′

δxi

)
P

(330)

where

ũ′i is computed by the equation (325)

u′i is computed by the equation (324) (neglecting ũ′i )

The application of the discretised continuity equation to the corrected
velocity leads to a second correction equation for the pressure.

δ

δxi

[
ρ

Aui
P

(
δp′′

δxi

)]
P

=

[
δρũ′i
δxi

]
P

(331)

Additional correction steps can be applied (but rarely done in practice)
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Implicit pressure-based scheme for NS equations: PISO
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SIMPLER Method

The equation for the pressure correction (326) is solved with the
last term being neglected (as SIMPLE algorithm)

The pressure correction obtained from this step is only used to
correct the velocity field um

i in order to satisfy the continuity
equation

The new pressure field is computed from the pressure equation
(322) by replacing ũm∗

i par ũm
i (ũm

i is known)

This methods is known as the SIMPLER method.
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Fractional Step methods

Method developped by (Kim & Moin, 1985) [2]

The method is more a generic approach than a particular method

Does not use pressure in the predictor step

For incompressible flow, the aim of the pressure is to satisfy the
continuity equation (mathematical variable)
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Fractional Step methods

The discretised momentum equation can be written in symbolic form:

(ρui )
∗ − (ρui )

n

∆t
=

1

2
[H(un

i ) + H(u∗i )]−
δpn

δxi
(332)

where H(ui ) is an operator which represents the convective terms ,
the diffusive terms and the discretised source terms.

The equation for u∗i can be solve using any method.
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Fractional Step methods

In a second step, half of the old pressure gradient is removed from u∗i
leading to u∗i ∗:

(ρui )
∗∗ − (ρui )

∗

∆t
=

1

2

δpn

δxi
(333)

and the velocity un+1
i is estimated by:

(ρui )
n+1 − (ρui )

∗∗

∆t
= −1

2

δpn+1

δxi
(334)

with pn+1 solution of the Poisson equation:

δ

δxi

(
δpn+1

δxi

)
=

2

∆t

δ(ρui )
∗∗

δxi
(335)
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Fractional Step methods

The new velocity (obtained from (334) satisfies the continuity
equation and the momentum equation of the form:

(ρui )
n+1 − (ρui )

n

∆t
=

1

2
[H(un

i ) + H(u∗i )]−
1

2

(
δpn

δxi
+

δpn+1

δxi

)
(336)

To represent the Cranck-Nicholson method correctly, H(u∗i )
should be replaced by H(un+1

i ).

The error is of the second order in time

The equation for the pressure correction can be obtained by
subtracting (332) from (336)

(ρui )
n+1 − (ρui )

∗

∆t
= −1

2

δp′

δxi
(337)
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Fractional Step methods / SIMPLE-type methods

Difference between fractional-step methods and SIMPLE-type
methods:

Fractional-step methods:

→ the pressure (or pressure-correction) equation is solved once per
time step.

→ more suitable for unsteady flow

SIMPLE-type methods:

→ both the momentum equation and the pressure-correction
equations are solved several times within each time step (outer
iteration)

→ more suitable for steady flows (continuity equation must be satisfy
accurately only at convergence)

→ with large ∆t, the pressure correction equation must be solve for
each internal iteration
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Artificial compressibility method

The compressible flows are hyperbolic and the incompressible
equations are parabolic-hyperbolic

If the methods for compressible flows are to be used for
incompressible flows, the character of the equations will need to
be modified ⇒ add time derivative in the continuity equation.

As the density is constant, the best choice is to introduce a time
derivative of the pressure.

1

β

∂p

∂t
+

∂(ρui )

∂xi
= 0, (338)

where β is the artificial compressibility (
√

β represents the speed of
sound in the transformed system)

The time history of the simulation generated by this method is not
accurate and the method should not be used to simulate unsteady
flows.
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Artificial compressibility method

Let’s consider the implicit Euler scheme.

pn+1
P − pn

P

β∆t
+

[
δ(ρui )

δxi

]n+1

P

= 0 (339)

un+1
i is unknown. However (ρui )

n+1 may be approximated as:

(ρui )
n+1 ' (ρu∗i )

n+1 +

[
∂(ρu∗i )

∂p

]n+1

(pn+1 − pn) (340)

By inserting this expression into the continuity equation (339) we
obtain an equation for the new pressure pn+1
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Brief Introduction
to

Compressible Flows
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Compressible flows

Numerical methods need to be adapted to compressibles flows

The equations for compressible flows are hyperbolic

Sound and waves are able to travel at finite speed

Compressible flows can include discontinuities like chocs

→ Important impact in the properties of the numerical schemes
→ Chocs are very difficult to simulate accuratly
→ The scheme must respect special properties (conservation, TVD)
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Compressible flows

Differential form of the conservation laws inside a domain Ω

d

dt

∫
Ω

A dΩ +

∫
Σ

a · ndΣ =

∫
Ω

AdΩ (341)

Where

A is the vector of the considered quantities,

A is the production of A in Ω

a is the echange through the surface Σ

A a A

masse ρ 0 0
momentum ρU −σ ρg

energy ρE q − σU r + ρ(gU)

σ is the stress tensor

q is the heat flux by conduction

r is the volume heat echange

J.-P. Laval IMP: Numerical Methods



Introduction Introduction to numerical methods Interpolation Discretisation Linear System Time integration Stability Solving NSVelocity-Pressure coupling Compressible flows

Compressible flows: discontinuities

The general conservation law can be applied to a domain including a
discontinuity δ.

jump relations:

JA (U − Sδ)nδ + anδK = 0 (342)

where JΨK is the jump normal to the discontinuity nδ.
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Compressible flows: Euler equation

Let consider the 1D Euler (inviscid) equation
∂w

∂t
+

∂f (w)

∂x
= 0

w(x , 0) = w0(x)

(343)

with

w = (ρ, ρu, ρE ) is the vector of conservative variables

f (w) = (ρu, ρu2 + p, ρEu + pu) is the flux vector

Can have solutions including some discontinuities (choc or contact
discontinuity) ⇒ need to extend the concept of “classic”solutions
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Compressible flows: Euler equation

Introduce a test function φ(x , t) continuously derivable with a
compact support

By integrating (343):∫ ∞

0

∫ ∞

−∞

[
φ

∂w

∂t
+ φ

∂f

∂x

]
dx dt = 0 (344)

after integrating by part:∫ ∞

0

∫ ∞

−∞

[
∂φ

∂t
w +

∂φ

∂x
f

]
dx dt =

∫ ∞

−∞
φ(x , 0)w(x , 0)dx (345)

Definition: A function w(x , t) is a weak solution of the conservation
law if (345) is satisfied for any function φ ∈ C 1

0
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Compressible flows: Euler equation

If JuK is the jump of a function u through a discontinuity, the weak
solution can be characterized by using the following theorem:

Theorem

A function w(x , t) C1 by piece and which satisfy the initial condition
(343) is a weak solution if and only if:

w is a “classic” solution in the domain where it is C1

w satisfy the jump relation (Rankine-Hugoniot relations)

Jf (w)K = sJwK (346)

through the discontinuity, where s id the speed of the discontinuity.
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Compressible flows: Characteristics

The Jacobian associated to the system (343) is

A(w) =
df

dw
=

 0 1 0

−γ−1
2 u2 (3− γ)u γ − 1

(γ−1
2 u2 − H)u H − (γ − 1)u2 γu

 (347)

Where H = E + p/ρ is the total enthalpy.

(343) is completly hyperbolic ⇒ A has 3 real and distinct
eigenvalues:

λ1(w) = u − c , λ2(w) = u, λ3(w) = u + c (348)

where c =
√

γp/ρ is the speed of sound

The eigenvalues represents the speed of information inside the flow.

Characteristics: curves defined by dx/dt = λk(w), k ∈ 1, 2, 3.
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Compressible flows: conservative form

When the characteristics are convergent in time, a choc wave is
generated due to the convergence of the characteristics.

For the computation of the weak solutions of hyperbolic system of
equation, the numerical schemes must have the following properties:

Being in the conservative form

Being non-oscilatory for the computation of discontinuities

Must verify an Entropy inequallity in order to select the possible
physical solution
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Compressible flows: conservative form

To be in the conservative form, the scheme must satisfy

wn+1
j − wn

j

δt
= − 1

δx

[
F (wn

j−p, ...w
n
j+q)− F (wn

j−p−1, ...w
n
j+q−1)

]
(349)

where F (wn
j−p, ...w

n
j+q) is the numerical flux of the scheme.

The scheme is consistant if F (U, ..,U) = f (U).

Conservation property of the numerical method is fondamental
for the computation of weak solutions
Otherwise, it is possible to compute solutions of flows with chocs
propagating with the wrong speed

Theorem (Lax-Wendroff, [3])

If w(x , t) is the discret solution of a conservative scheme and if
w → u when the space and time grid goes to zero (δx → 0, δt → 0),
therefore, u is a weak solution (which may include chocs) of the exact
problem.
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Compressible flows: Lax scheme

Let consider the Euler one-dimensional equation (343) discretized
with a one order central scheme:

wn+1
j − wn

j

∆t
= −

f n
j+1 − f n

j−1

2∆x
(350)

This scheme is unstable.

The Lax scheme is based on the previous scheme, but wn
j is replaced

by 1
2(wn

j−1 + wn
j+1) .

wn+1
j =

1

2
(wn

j−1 + wn
j+1)−

∆t

2∆x
(f n

j+1 − f n
j−1) (351)

The scheme is still explicit and first order but is conditionaly stable
(CFL ≤ 1).
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Compressible flows: Lax-Wendroff scheme

The basic approach of the Lax Wendroff scheme is to use the time
serie expansion:

wn+1
j = wn

j = ∆t
∂w

∂t
+

(∆t)2

2

∂2w

∂t2
+

(∆t)3

6

∂3w

∂t3
+ ... (352)

The term in (∆t)2 is maintained and replaced by the space derivative
term using the original equation:

∂2w

∂t2
= − ∂

∂t

(
∂f

∂x

)
= − ∂

∂x

(
∂f

∂t

)
= − ∂

∂x

(
df

dw

∂w

∂t

)
= − ∂

∂x

(
A

∂w

∂t

)
=

∂

∂x

(
A

∂f

∂x

)
(353)

where A =
df

dw
is the Jacobian.
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Compressible flows: Lax-Wendroff scheme

Then replacing this term into the Taylor expansion, one can define the
one-stepnon-linear version of the Lax-Wendroff scheme:

wn+1
j = wn

j −
1

2
σ(f n

i+1 − f n
i−1)

+
1

2
σ2
[
An

i+1/2(f
n
i+1 − f n

i )− An
i−1/2(f

n
i − f n

i−1)
]

(354)

where σ = ∆t/∆x and

Ai+1/2 = A(wi+1/2) (355)

or

Ai+1/2 =
1

2
(Ai + Ai+1) (356)
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Compressible flows: Lax-Wendroff scheme

For the linear form: one more step in the evaluation of eq. (353)

∂2w

∂t2
=

∂

∂x

(
A

∂f

∂x

)
=

∂

∂x

(
A2 ∂w

∂x

)
(357)

and the Lax-Wendroff scheme is defined by

wn+1
j = wn

j − 1

2
σ(f n

i+1 − f n
i−1)

+
1

2
σ2A2

j (w
n
i+1 − 2wn

i + wn
i−1) (358)
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